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1 

INTRODUCTION 

The central nervous system (CNS) in mammals is a highly ordered structure of multiple 

cell types, functions and interactions. It works to maintain homeostatic balances throughout the 

body for temperature, digestion, blood pressure and oxygenation and all the fine sensory inputs 

and motor controls throughout the body. In addition, it shapes the behavioral and cognitive 

landscape of the animal and governs its interactions with other organisms and the environment. 

To achieve its function, the CNS is composed of four primary cell types; neurons and the glial 

cells, oligodendrocytes, astrocytes and microglia. 

Through much of modern neuroscience and biology, neurons have been the focus of study 

and analysis as they generate the large electrical signals detectable as electroencephalographs 

(EEG) (Yeager, 1950). They are also the cells with the most apparent, extensive branching 

patterns and the only cells in the CNS that discretely connect physical nuclei (Liska et al., 2015; 

Witter, 2006). This view was strengthened upon post-mortem analysis of CNS tissue form 

neurodegenerative diseases where intracellular inclusions, neuronal loss, axonal spheroids and 

axonal transections were all readily visible phenotypes, suggesting neurons are vulnerable to 

these diseases (Adams and Kubik, 1952). However, this was a simple view that was quickly 

altered as more information regarding the other cell types of the CNS was discovered. 

Oligodendrocytes and Myelin 

The last major glial type to be described microscopically was the oligodendroglia lineage 

of cells in 1921 (Garrosa, 2012; Rio-Hortega, 1921). Their similarity to Schwann cells, the 

peripheral nervous system (PNS) lipoprotein producing cells that sheath axons was a major focus, 

however the organization, morphology and clustering was distinctly different. The glial cells 

described have fewer processes than other glial types and with their cell bodies were linearly 

arrayed in white matter and often located near blood vessels and neuronal cell bodies. 

Subsequently, oligodendrocytes were confirmed to be synthesizing myelin for axons, not just 
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arranged in juxtaposition to myelin sheaths (reviewed in Boullerne, 2016). Although the physical 

relationship between myelin and axons was established, the exact purpose of myelin was still in 

debate. Myelin increases the conduction velocity and the fidelity of signal transduction that allows 

action potentials to cover greater distances with less energy expenditure (Peters, 1960; 

Rasminsky, 1972). However, the benefit in conduction to neurons does come with a cost to 

oligodendrocytes because the large amount of myelin a single cell synthesizes for up to one 

hundred axons leaves it susceptible to metabolic disruptions. 

In addition to ensheathing multiple axons, the number of myelin wraps depends on the 

diameter of the axons. As the diameter of the axon grows, so too will the number of myelin wraps 

creating a constant relationship between the outer diameter of a myelin sheath and the inner 

axonal diameter called the g-ratio (Waxman, 1975). This is further evidence that an individual 

oligodendrocyte can be placed under a large metabolic load to initially synthesize the myelin for 

the axons it contacts and to maintain myelin throughout life (Gow et al., 1994b) 

Oligodendrocyte Metabolic Stress 

The concept for a metabolic stress phenotype in oligodendrocytes originated with the 

characterization and observation of mice, rats and patients with hypomyelination and an 

oligodendrocyte phenotype (Bischoff, 1975; Knapp et al., 1986; van Noort et al., 1995). The initial 

characterizations identified decreased myelination and oligodendrocyte populations without 

identifying the cause of the cellular loss. Some work suggested that the loss may be due to 

immune involvement depleting oligodendrocytes, similar to the immune infiltrating lesions in MS 

that attack and degenerate myelin (Gardinier and Macklin, 1988; Turnley et al., 1991). However, 

further investigation revealed a different, common mechanism for many of the diseases resulting 

from overexpression of myelin proteins or expression of mutant proteins. 

The initial insights into the pathology of oligodendrocyte metabolic stress pathology began 

with the identification of anomalous gene transcript and transcript levels for the major myelin gene, 
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proteolipid protein 1 (Plp1) in mice developing a spontaneous demyelinating phenotype (Dautigny 

et al., 1986; Gardinier and Macklin, 1988; Ikenaka et al., 1988). These observations identified 

deficits and changes to the Plp1 transcript and protein level, but did not address fully how these 

changes were affecting oligodendrocytes. Indeed, a complete knockout of Plp1 resulted in no 

overt phenotype until mice were over one year of age, when the mutant mice would often die by 

postnatal day 30 (Raskind et al., 1991; Rosenbluth et al., 1996). 

A more complete understanding of the phenotype came from work in the early to mid 

1990s that identified protein trafficking and the unfolded protein response (UPR) as contributors 

to the oligodendrocyte phenotype (Gow et al., 1994a, b; Gow et al., 1998). Mutations in Plp1, or 

its smaller splice isoform DM20, will cause the protein to misfold as it is translated in the ER and 

will either be degraded or accumulate in the ER (Gow et al., 1992; Southwood et al., 2002). The 

location of the mutation in the Plp1 gene contributes to the severity of the misfolding and cellular 

stress that in turn leads to more or less pronounced phenotypes in animals and in patients 

(Garbern, 2007; Gow and Lazzarini, 1996; Gow et al., 1998). This understanding of the primary 

etiology of dysmyelinating disease enabled alternate interpretation of oligodendrocyte 

involvements and particularly the importance of maintaining oligodendrocyte homeostasis 

(Southwood et al., 2016). 

Unfolded Protein Response in Disease 

Maintaining a balance between peptide synthesis, folding and degradation of damaged or 

misfolded proteins is important to all cell types. Depending on the metabolic demands of the cell, 

disruptions to these processes will negatively impact cellular health. Specifically, in this pathway, 

there is a need to monitor the higher order structure of peptides to prevent misfolding of peptides 

and enhance degradation of aberrant products (reviewed in Kaufman, 2002). This UPR maintains 

cellular health but sustained, long term activation of this pathway can have negative effects on 

cellular survival. 
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The UPR pathway evolved to protect cells from the toxic effects of excess misfolded 

proteins when those peptides utilize chaperones, ATP and metabolites at a rate significantly 

above the basal level (Gow and Wrabetz, 2009). It was originally identified in yeast where the 

dimerization of the IRE1 protein in the endoplasmic reticulum membrane led to splicing and 

activation of the Hac1 mRNA and transcription of chaperone and proteins for degradation (Kohno 

et al., 1993). However, during evolution in multicellular organisms the UPR grew in complexity to 

include three major factors. 

In mammals, one of the main arms of the UPR involves dimerization and 

autophosphorylation of the PERK protein (protein kinase RNA-like endoplasmic reticulum kinase) 

after binding to the ER lumen protein BiP (binding immunoglobin protein). When hydrophobic 

domains or cytosolic regions of proteins are exposed in the ER, BiP activates PERK, which then 

phosphorylates eIF2a (eukaryotic initiation factor 2) and removing eIF2a from the translation 

initiation complex and halting translation of some mRNAs. Next, ATF4 (activating transcription 

factor 4) is translated and allows for the transcription of a number of proteins involved with 

reinitiating translation and degrading the unfolded proteins by endoplasmic reticulum associated 

degradation (ERAD) (Southwood et al., 2016). One of the important targets of ATF4 is the CHOP 

protein (CCAAT-enhancer-binding protein homologous protein). 

The CHOP protein was thought to be a pro-apoptotic protein as expression of nuclear 

CHOP often preceded apoptosis in cells undergoing the UPR (Maytin et al., 2001). Further 

investigation, though, revealed that CHOP in oligodendrocytes, Schwann cells and osteoclasts is 

not a pro-apoptotic protein, even when it is overexpressed as the dogma predicted (Gow and 

Wrabetz, 2009; Southwood et al., 2002). Increased expression of apoptotic markers, such as 

caspase-3, is more likely to result from a failure to establish homeostasis after activation of the 

UPR and an eventual depletion of cellular energy stores. 

Due to their high level of metabolic activity during myelinogenesis, oligodendrocytes are 

reliant on the proper functioning of the UPR to maintain their synthetic activity. Overwhelming the 
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UPR through excess synthesis or the inability to remove toxic, misfolded proteins is the hallmark 

of two leukodystrophies; the mild Spastic Paraplegia Type 2 (SPG2) and Pelizaeus-Merzbacher 

Disease (PMD) (Gow et al., 1998).  

Focusing on one type of protein disruption, several point mutations in the PLP1 gene result 

in severe developmental and physical phenotypes and truncated lifespans in PMD patients and 

rodent models of the disease. One of these is the myelin synthesis deficient (msd) A242V 

mutation, with extensive hypomyelination and a life expectancy of 30 days for mice and from 

weeks to a decade for affected males (Gencic and Hudson, 1990). Numerous point mutations in 

PLP1 have been described for PMD patients with varying degrees of severity depending on the 

mutation locations. The severity is defined by the ability of PLP1 to correctly traffic appropriately 

to the cell surface of oligodendrocytes, or in in vitro systems to the cell surface of HeLa cells or 

COS7 fibroblasts (Gow et al., 1994a). 

A similar degenerative phenotype in patients and animal models can be achieved through 

overexpression of the PLP1 protein when the PLP1 gene is duplicated (Inoue et al., 1999; 

Readhead et al., 1994). Severe hypomyelination, developmental delay and premature death can 

all result from the PLP1 duplications, a convergent phenotype with PLP1 mutations. Molecularly 

the phenotypes are also conserved because mutant PLP1 protein will accumulate in the ER, and 

supra-normal transcription and translation of PLP1 will also result in an ER buildup of PLP1 protein 

(Gow et al., 1998). The severity of the mutations and duplications is also a result of their 

constitutive expression during development because most myelination occurs post-natal in the 

first three weeks in mice or first 5-6 years in humans (Dautigny et al., 1986; Raskind et al., 1991). 

Interestingly, not all mutations of PLP1 produce severe disease, and some have 

manifested clinically as MS but subsequent genomic sequencing confirmed a PMD diagnosis 

(Warshawsky et al., 2005). The presentation of PMD as MS in addition to studies showing similar 

axonal and neuronal pathologies between the diseases. These observations lend weight to the 

idea that MS is not a primary immune disease and that oligodendrocyte dysfunction could be an 
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alternative etiology (Edgar et al., 2010; Gow et al., 1998; Trapp  et al., 1998). This, along with 

evidence from Hans Lassman in Austria and John Prineas in Australia regarding UPR markers in 

oligodendrocytes of MS patients were encouraging ideas for the OBiden project (Ozawa et al., 

1994; Prineas et al., 1984). 

Multiple Sclerosis History and Model Development 

Multiple Sclerosis is a demyelinating, neurodegenerative disease that typically manifests 

in patients during their early to mid 20s. Symptoms can be mild, including: transient numbness, 

slight loss of visual acuity to severe with limb paralysis, temporary blindness and gastrointestinal 

distress (Confavreux and Vukusic, 2006; Haussleiter et al., 2009; Polak et al., 2011; Rovaris et 

al., 2006). Originally, axonal and neuronal damage was widely noted in post-mortem 

examinations of the brains of MS patients in addition to immune cell infiltration that became the 

focus of MS investigation for much of the 20th century (reviewed in Adams and Kubik, 1952). 

Accurate diagnosis, monitoring and treatment of MS remained elusive until the first animal 

model replicating some of the symptoms was established, experimental autoimmune 

encephalomyelitis (EAE) (Rivers et al., 1933; Vogel, 1951). The EAE model, in its original and 

improved iterations involved immunizing animals with a myelin peptide in an immunopotentiator 

adjuvant emulsion to trigger a peripheral immune response. This model led to increased research 

into the active, immune reactive lesions in MS and led to the development of one of the first, and 

arguably most effective treatments, interferon-beta (INF-b) (Jacobs et al., 1982). Additional 

interferons were contemplated and used in small clinical trials but were found to be ineffective or, 

as in the case of INF-g, exacerbated the disease for many patients (Panitch, 1987). 

Interferon-beta remained the standard of treatment for MS for decades and was evaluated 

in additional mouse models such as ethidium bromide injections into CNS white matter, 

lysolecithin CNS injections and cuprizone (copper chelator) feeding (Dousset et al., 1995; Franklin 

et al., 1993; Gao et al., 2000; Goldberg et al., 2015). These chemical models, depending on the 
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dose, effect oligodendrocytes and can cause demyelinating lesions at injections sites, or more 

widespread in the CNS. They were primarily used to evaluate the immune and glial responses to 

demyelination and mechanisms and effectiveness of treatments developed since INF-b. The 

treatments that were developed worked by eliminating B or T cells before they could mature, 

blocking immune cell exit from lymph nodes, or inhibiting antigen presentation from B to T cells. 

These therapies were developed and tested in murine models but in patients the therapies did 

not prevent disease progression and in some cases exacerbated disease course (Calabresi et al., 

2014; Coles et al., 2004; Coles et al., 2008; Duddy and Palace, 2015; Giovannoni et al., 2014; 

Kappos et al., 2014). 

For example, observations of MS lesions, and staining studies, identified cytotoxic CD4+ 

T-cells as a component of active MS lesions. Clinical trials on anti-CD4 cell therapies showed 

significant reductions in the amount of T-cells present in circulation and CSF, without a significant 

alteration of disease course (Oosten et al., 1997). Later results showed that this may have been 

due to the fact that even though CD4 or CD8+ T-cells react to myelin peptides, they do not directly 

cause neuronal damage (Reuter et al., 2015). Therefore, even a total elimination of these cell 

populations would not prevent continuing neural degeneration if the disease has a significant non-

immune component.  

As T-cell therapies proved disappointing in most MS cases, some attention shifted to the 

involvement of B-cell populations in the disease etiology. As the B-cells are responsible for 

antigen presentation to activate T-cells, as well as antibody production, it appeared that B-cells 

becoming reactive to CNS proteins could account for MS symptoms. This led to the targeting of 

proliferating B-cells with anti-CD20 antibody therapies to reduce the population and halt MS. The 

B-cell therapies were more effective than T-cell therapies at reducing the some of the clinical 

signs of MS, such as MR lesions and circulating immune cells, however they failed to prevent 

transitions from the milder RRMS to secondary progressive MS (SPMS) (Montalban et al., 2016). 

Although substantial effort has focused on identifying immune targets for treatment in MS, single 
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or combination therapies have failed to cure the disease or prevent progression in many patients. 

In addition, alterations or suppression of the immune system can have significant side effects 

including increased likelihood and severity of infection. 

The increased understanding that the immune system is only part of the etiology of MS 

has led to a rediscovery of the axonal and neuronal phenotypes first identified in the 19th and early 

20th centuries. Indeed, new MS treatments originally designed for immune suppression have been 

found to be beneficial because of effects on neurons within the CNS (Lublin et al., 2016). The 

notion that a primary CNS etiology for MS causes the pathology and patient decline independent 

of the well documented peripheral cytotoxic immune infiltration is one of the tenets leading to the 

development of our new mouse model. 

This model, the OBiden mouse, was designed to recapitulate MS-like pathology by 

inducing primary dysfunction in oligodendrocytes and monitoring the secondary glial, neuronal 

and behavioral deficits. Rather than exogenous agents, the OBiden mouse relies on induction of 

the UPR in mature oligodendrocytes by inducing expression of the mutant Plp1msd protein and 

metabolic stress and cell death in a subset of mature oligodendrocytes (Gow, 2011). A strength 

of this approach is that the mechanism of oligodendrocyte death is extensively characterized 

allowing focus to shift to the secondary effects of altering mature oligodendrocytes in adult mice 

(Gow et al., 1994b; Gow and Lazzarini, 1996; Gow et al., 1998; Gow and Wrabetz, 2009; Sharma 

and Gow, 2007; Southwood et al., 2002). Because MS commonly presents in adult life after 

myelination of most white matter tracts is complete this approximates the apparent timeline seen 

in MS patients. 

Gray Matter Pathology 

The white matter and oligodendrocyte etiologies may be a novel avenue of MS 

investigation, however, the mechanism must still result in gray matter damage that is key to MS 

pathophysiology. This is especially important for the progressive forms of disease whether it is 
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SPMS or primary progressive MS (PPMS). These are the more debilitating forms of MS, and as 

of yet there are no effective treatments in reducing the neurodegenerative progression in either 

subclass of MS. 

Although the degeneration of gray matter is a well-established feature of MS, the 

mechanism and the development of efficacious treatments have proven elusive. Indeed, the 

nature and timeline of neurodegeneration in MS is difficult to determine with the limits of imaging 

techniques that are not always sufficiently sensitive to detect lesions and atrophy, and tests for 

cognitive performance have only recently become more widespread (Walker et al., 2016). This 

makes investigating the cognitive changes and underlying neuronal deterioration in the OBiden 

mouse especially important. For example, they could open up new avenues of research as well 

as identify some of the underlying degenerative changes that have been overlooked for years in 

MS. 

Past and current work on axonal or neuronal degeneration is MS have been limited and 

focused on descriptive studies of pathology (reviewed in Kornek and Lassmann, 1999). However, 

how these pathologies develop, whether through axonal transport deficits, protein degradation or 

as a result of immune infiltrates, and their effect on neuronal function remains to be determined 

(Hampton et al., 2013; Huizinga et al., 2008; Lidster et al., 2013). Interestingly, more and more 

work has also identified connection deficits in the CNS through the use of electroencephalography 

(EEG) (Gschwind et al., 2016). These suggest interhemispheric communication disruptions likely 

as a result of changes to the action potentials of principal cells and changes to the action potential 

generating axon initial segment (AIS). Although EEG changes will not be investigated here, they 

provide additional insight into the distribution and type of pathology in MS, as well as novel ways 

by which the OBiden model can be investigated. 
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Axon Initial Segment in MS Pathology 

A specific aspect of neuronal architecture that has not been extensively investigated in 

MS is the axon initial segment (AIS). The AIS is a region of the proximal axon with a highly 

structured organization where sodium and potassium channels are densely clustered along its 

length. This allows the AIS to generate action potentials because of the high conductance within 

its boundaries, for communication between neurons (Inda et al., 2006; Palay et al., 1968; Susuki 

and Rasband, 2008). In addition, the AIS is known to be extensively innervated with GABAergic 

synapses. The nature of these synapses, the density and distribution of channels and the length 

and location of the AIS relative to the soma all depend on the state of the pre-synaptic neuron 

(Evans et al., 2015; Inda et al., 2006; Kole and Stuart, 2012; Schafer et al., 2009; Szabadics et 

al., 2006). The interplay of the abundance and location of ion channels, especially the sodium 

channel variant Nav1.6 and the potassium channel variants, Kv7.2 and Kv7.3, are critical to the 

rate and timing of action potential generation (Battefeld et al., 2014; Kole et al., 2008). 

Because the AIS is highly regulated and structured, molecular changes to neurons within 

a cortical region and cell subtype should be readily detectable with antibody staining techniques, 

and broader changes to large areas should be evident with western blotting. For ICC, the 

pyramidal cells of layer 5 and 6 have distinct AIS usually beginning at the medial surface of the 

neuron and continuing for 15 – 30µm. In addition, they express unique markers such as the 

transcription factor COUP-TF interacting factor 2 (Ctip2), a negative regulator expressed primarily 

in post-mitotic pyramidal cells of the cortex and hippocampus (Chen et al., 2008). Together, these 

markers are useful tools for targeting specific cortical regions especially in human tissue where 

the cortical layers are less dense and well defined compared to mice. Changes to the AIS and 

gray matter regions in the OBiden mouse could yield valuable new insights in the etiology and 

progressive pathology in MS. 
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Applicability of the OBiden Mouse 

With a potential for changing perspective on the etiology of MS, new insights into potential 

pathologies and their relevance to the disease are needed. The OBiden mouse could identify new 

pathogenic mechanisms in MS, and potentially other neurodegenerative diseases that involve the 

myelin producing oligodendrocytes. Through the use of induction of established oligodendrocyte 

stress pathways, in this case metabolic stress and the UPR, the OBiden model can more 

accurately recapitulate pathways that may be active within the CNS. This contrasts with models 

using exogenous toxins or proteins to generate toxic stresses in oligodendrocyte, or artificial 

induction of peripheral immunoreactivity that replicates just one aspect of MS. The OBiden mouse 

has the potential to model both the chronic and acute phases of MS, depending on the extent of 

oligodendrocyte metabolic stress. The acute phase can give insights into lesion development and 

spread, while the chronic stress, which is used in this project, serves to model the chronic, 

neurodegenerative phase of MS. Together, the development, characterization and analysis of the 

OBiden model, including potential new neurodegenerative consequences, allows for new 

perspectives and insight in MS and hopefully neuroscience generally. 

Chapter 1 Results 

In Chapter one, the genetic structure of the transgenes and their long term stability and 

activation were analyzed in the OBiden mice. Specifically, the genetics of how inducible metabolic 

stress is achieved through activation of the UPR by an endogenous oligodendrocyte protein. 

Because the inducible transgene eliminated the endogenous Plp1 gene, a rescue transgene and 

its long term expression are also described. To analyze the mice, levels of myelin proteins were 

quantified instead of mRNA levels, because levels of Plp1 mRNA from transgenic mice are 

consistently greater than the level of protein (Inoue et al., 1996). 

In addition to the molecular analysis of the mice, a longitudinal in vivo electrophysiological 

evaluation of the OBiden animals was conducted. Using auditory brainstem responses (ABR) to 
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pure tone sounds of various frequencies and intensities two aspects of the OBiden mice were 

measured. First, the functional rescue of the inducible Plp1 transgene knock out phenotype was 

analyzed for degeneration in the brainstem of aging mice. Because much of the pathway is 

myelinated, it allows for the determination of myelin disruptions locally, and can be used as a 

surrogate indicator of more global myelin disturbances. 

Finally, it is critical to confirm that the oligodendrocytes in the CNS are undergoing 

metabolic stress and have activated the UPR pathway chronically. Downstream targets activated 

during cellular UPR have been previously characterized, and these markers were used to confirm 

that oligodendrocytes in the OBiden mice were undergoing UPR related stress compared to none 

in the controls. Critically, the presence of UPR markers in 12 month mice was important to 

demonstrate because it shows sustained activation of the UPR pathway in either established 

oligodendrocytes or in newly differentiated oligodendrocytes. 

Chapter 2 Results 

The OBiden model possesses the unique ability to create a relatively moderate level of 

cellular stress in oligodendrocytes, thereby not creating global demyelinating events and allowing 

the CNS to function but with a disrupted function. Behavioral and cognitive changes have been 

identified, not only in MS, but across neurodegenerative diseases (Koenig et al., 2014; Llufriu et 

al., 2014). Although for years the cognitive and behavioral impact of MS was either unknown or 

underreported, it is now recognized as an important factor in the disease and a sign of continued 

progression of MS even in the absence of physical decline. 

To test for these changes in the OBiden mice, the animals were put through a battery of 

behavioral tests. These tests were to identify changes in working memory, spatial memory, fear 

conditioning, and the development of depression-like endophenotype in the mice. Changes to 

analogous cognitive pathways has been identified in MS patients (Koenig et al., 2014; Llufriu et 

al., 2014). Other animal models of MS, such as EAE, have difficultly performing behavioral tests 
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due to the physical paralysis that occurs as acute disease progresses in the mice. Because 

OBiden mice do not have overt sensorimotor deficits compared to Controls, this makes them well 

suited to the study of long term cognitive changes. 

The analysis of the OBiden mice was conducted at three time points to test for which 

behaviors OBiden mice were abnormal in and when these deficits arose. Baseline testing began 

at 2 months of age immediately prior to the induction of metabolic stress followed by tests at 6 

months of age (4 months of metabolic stress induction) and at 12 months of age (10 months of 

metabolic stress induction). The OBiden mice showed deficits in multiple paradigms, including 

working memory testing and the development of a depression-like endophenotype. Importantly, 

some behaviors remained unchanged, indicating that degeneration in the OBiden mice, at least 

through 12 months of age, is specific and not global. This specificity allows for the study of specific 

CNS regions. 

Chapter 3 Results 

The clinical evaluation of MS was significantly enhanced by the development of magnetic 

resonance (MR) imaging techniques adapted from physical chemistry and applied to patients to 

obtain in vivo images of the CNS (Scherzinger and Hendee, 1985; Young et al., 1981). MR 

techniques evolved by increasing magnet power, field strengths and coil sensitivities to give more 

detailed images of the CNS and allowed for more sophisticated scanning parameters to highlight 

functional and structural aspects of the CNS. 

In this chapter, MR techniques are utilized to evaluate the OBiden mice in vivo to 

determine if degeneration can be detected in vivo, and if so where and when it arises. Two main 

series of scans were utilized; T1 and T2 weighted 1H structural scans to differentiate white and 

gray matter and the CSF filled ventricles in the brain. One signature of degeneration noted in MS, 

and other neurodegenerative diseases, is expansion of the ventricles within the CNS (Nijeholt et 

al., 1988). In addition, volumetric changes to gray matter nuclei have been noted in MS, as well 
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as the more common feature of periventricular white matter lesions (Pardini et al., 2014; Seewann 

et al., 2009). Therefore, if the MR structural techniques were sensitive enough and degeneration 

significant enough in the OBiden mice, an analysis for multiple parameters could be undertaken.  

MR techniques can also be used to assess more functional aspects of the CNS as well 

and one well adapted technique to many diseases is diffusion tensor imaging (DTI). This 

techniqued is based on the constriction or free flow of water molecules within the CNS, as is 

designed to highlight axonal bundles with parallel trajectories where more water molecules are 

confined to the axonal space and restricted in their movement (Llufriu et al., 2014). Because the 

OBiden model is a primary stress in the white matter of the animals, DTI was used to determine 

if there were changes to white matter fiber tracts or the less tightly bundled axons of gray matter. 

Chapter 4 Results 

In this chapter, the OBiden mice were directly compared to MS post-mortem tissue 

through the use of histological and immunocytochemical (ICC) techniques. This analysis was 

performed to identify details about the location and extent of pathology in the CNS and their 

similarities to MS patients. Histological techniques have an extensive history in many diseases 

because they were extensively used to stain and analyze tissue before the advent of antibody 

and molecular biology techniques. Therefore, they are often extremely well characterized in their 

methods and the types of pathology that can be detected. 

The focus of the histological analysis was on the detection of white and gray matter lesions 

through the use of two stains, luxol fast blue (LFB) for myelin and Bielschowsky modified silver 

stain for axons (Snodgress et al., 1961; Yamamoto and Hirano, 1986). These stains have been 

shown to differentiate between intact and demyelinating areas, detect axonal spheroids as well 

as neurofibrillary tangles and are robust in terms of their effectiveness regardless of the 

preparation or state of the tissue. By comparing the stains between MS tissue and the OBiden 
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mice, the similarities, differences and effectiveness of these techniques on the mice can be 

analyzed. 

In addition to the histological techniques, antibody staining to detect more specific 

secondary molecular changes in microglia, astrocytes and axons was utilized. The reaction of 

microglia and astrocytes to CNS stress, disease, dysfunction or degeneration has been widely 

repeated and is an important, albeit incompletely understood aspect of neurodegenerative 

diseases (Corbin et al., 1996; Fischer et al., 2013; Tang and Le, 2016). Nevertheless, as part of 

the analysis of the OBiden mice, the secondary reaction of these cells was important to analyze 

and confirm that we see secondary gliosis and where because the location of gliosis could 

elucidate CNS areas more susceptible to disease or more resilient to damage as the glial cells 

work to maintain homeostasis. Together with the histological analysis, this chapter looks into the 

broad CNS changes occurring in the OBiden animals. 

Chapter 5 Results 

The final chapter deals with the analysis of the secondary molecular neuronal changes in 

the OBiden mice as a result of primary oligodendrocyte stress, and again, their similarities or 

differences to MS tissue. To analyze the secondary neurodegeneration, a number of staining and 

molecular techniques were employed. These included western blots of tissue punches obtained 

from gray matter regions throughout the CNS, as well as staining and semi-quantitative analysis 

of fluorescence antibody staining. The goal was to detect regions of general neuronal dysfunction, 

then focus the analysis to a particular feature of interest that was altered in the OBiden mice 

compared to controls.  

To begin the analysis, forms of the structural neurofilament (NF) proteins, heavy, medium 

and light chain, were blotted for in addition to a general marker for neurons, NeuN, and synapses, 

amyloid precursor protein (APP) (Elder et al., 1998b; Gusel’nikova and Korzhevskiy, 2015). 

Markers such as NeuN and APP should be reduced in areas of gross tissue loss and 
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neurodegeneration, while the NF proteins could build-up as has been noted in early degenerative 

disease processes, or dropout if there was a significant loss of neurons or processes in the gray 

matter (Jacomy et al., 1999; Lee et al., 1994). Changes seen in the OBiden mice allowed for more 

specific analysis in cortical and hippocampal areas that also correlated with deficits seen in earlier 

behavioral tests. 

These changes focused on a section of the axon proximal to the cell body called the axon 

initial segment (AIS) where high densities of sodium and potassium channels are located to create 

an area of high conductance and low resistance across the membrane and maintain neuronal 

polarity. (Inda et al., 2006; Palay et al., 1968; Rasband, 2010; Song et al., 2009). The AIS is 

critical for the appropriate functioning of the CNS as action potential generation and transmission 

is the mechanism of long range communication in the CNS. Therefore, alterations to the timing, 

or threshold for action potential firing can have dramatic effects on CNS performance (Liska et al., 

2015). 

The analysis of the OBiden mice revealed alterations to AIS length and ion channel 

composition. Both have implications for connectivity and electrophysiological properties of the 

CNS that are the arena of future projects. However, the results are consistent with increasing 

evidence that the AIS is critical in neurodegenerative diseases but its link to MS is relatively 

unexplored making it an interesting area of study in the OBiden mouse. 
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CHAPTER 1 – GENERATION AND CHARACTERIZATION OF THE OBIDEN MOUSE 

Introduction 

The goal of much of this work is to understand the longitudinal consequences of chronic 

metabolic stress in oligodendrocytes and if, how and when it causes observable phenotypes in 

our mice. Specifically, we were trying to recapitulate the phenotype from the demyelinating, 

degenerative disease multiple sclerosis (MS), in response to recent failures in clinical trials of 

immune modulatory therapies as well as the fact that the current view of MS as a primary immune 

disease appears to be relatively untenable for the future (Kappos et al., 2014). The OBiden mouse 

is based off cumulative evidence on the similarities between the leukodystrophy, PMD and MS 

as well as the current lack of treatments to halt disease progression (Bauer et al., 2002; Gow et 

al., 1998). To determine if secondary neurodegeneration could be generated from a known 

primary insult to oligodendrocytes, and what phenotype that degeneration would take, the OBiden 

mouse was developed.  

One of the most important aspects of the OBiden mouse is that it does not use an 

exogenous chemical, cocktail, protein or other method to infect the mouse or breakdown the blood 

brain barrier (BBB) or result from direct injection or ingestion of a toxin foreign to the animal (Gao 

et al., 2000; Shaw et al., 1962). These models create aspects of demyelinating and neuro-immune 

diseases, but do so at the cost of causing gross physical damage to the animals making 

behavioral or other testing unreliable, and more importantly they likely only represent a subset of 

the pathology seen in the actual disease. This has been borne out in a way because the vast 

majority of treatments for MS have been based on the suppressing the immune infiltration seen 

in some white matter lesions of patients, and the infiltration of immune cells into the CNS seen 

most dramatically in the EAE model. The treatments based off suppressing or modulating the 

immune system did result in treatments for patients that could suppress the frequency of relapses 

linked to active demyelinating lesions, but did not eliminate these lesions, nor did the treatments 
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mitigate the arguably more debilitating aspect of MS, namely the buildup of gray matter lesions 

and neurodegeneration (Calabresi et al., 2014; Feinstein et al., 2015; Giovannoni et al., 2014; 

Kappos et al., 2014). 

This, in part, led to the idea behind the OBiden mouse, to develop a model primarily 

affecting oligodendrocytes in the CNS, rather than the peripheral immune system, and using an 

endogenous stressor rather than an injectable or chemical method to affect cells. In theory, we 

could acutely or chronically affect oligodendrocytes to create our primary disease trigger using 

the expression of mutant protein, an extremely well characterized cause of pathology in 

oligodendrocytes (Gow et al., 1998; Karim et al., 2007; Southwood et al., 2002). This method 

utilizes a disease cellular mechanism that is already known, eliminating the need to characterize 

the type of stress the oligodendrocytes would be undergoing and in addition takes advantage of 

the observation that the human disease resulting from mutant protein expression in 

oligodendrocytes can present with MS like symptoms and even respond to MS first line treatments 

(Southwood et al., 2013). The idea was to create a model that recapitulated MS phenotypes with 

little to no peripheral immune involvement to separate and identify different aspects of disease 

including what and how significant is the contribution from dysfunction in oligodendrocytes and 

could that be a primary etiology or major contributor to the disease process.  

Material and Methods 

Transgenes and Breeding 

The Plp1-i.msd inducible transgene was created by taking the Plp1msd gene and inserting 

an antisense LoxP flanked cassette containing the PGKNeo gene 3’ to exon 7. The Plp1-i.msd 

transgene is homologously recombined onto the X-chromosome in place of endogenous Plp1, 

which means males will either be Plp1-i.msd -/y or Plp1i.msd +/y and females can be Plp1-i.msd -/- 

or Plp1-i.msd +/- or Plp1-i.msd +/+. To differentiate we used 3 primers which give product sizes of 

493bp for wildtype Plp1 and 428bp for Plp1-i.msd: primer1 antisense – 
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TTTCCCACCAGAGACTACCGAG, primer 2 sense – GAGGTTGACACTTAGGGAAGTG, primer 

3 antisense – GCAGCCTCTGTTCCACATACAC. To remove the suppressive antisense transcript 

and allow expression of Plp1-i.msd we used CreERT2 under control of the Mbp promoter, and to 

identify Mcre+/- mice we used 2 primers to give a product of 290bp: primer 1 sense – 

GAGTACGTGCTCGCTCGATGC, primer 2 antisense – CTCCCACCGTCAGTACGTGAGAT. 

The KI transgene results in the mice being functional Plp1 knockout (Plp1-ko), and to rescue the 

Plp1-KO we inserted the Plp1 overexpressor (Plp1-OeX) transgene #72 from Klaus Armine-

Nave’s group in the heterozygous state to generate normal Plp1 protein levels and Plp1-OeX+/- 

mice. For genotyping we used Nave’s primer pair to get a 400bp product: primer 1 sense – 

CAGGTGTTGGAGTCTGATCTACACAAG, primer 2 sense – 

GCATAATACGACTCACTATAGGGATC. Male mice with all 3 transgenes, Plp1-i.msd+/y∷Mcre+/-

∷Plp1-OeX+/-, were the experimental OBiden mice and mice null for the Mcre transgene, Plp1-

i.msd +/y∷Mcre-/-∷ Plp1-OeX +/-, were used as Control mice. Female Plp1-i.msd +/+∷Mcre+/-∷Plp1-

OeX+/- and Plp1-i.msd +/+∷Mcre-/-∷ Plp1-OeX +/- mice were used as breeders and bred with male 

Plp1-i.msd +/y∷Mcre-/-∷ Plp1-OeX -/- or Plp1-i.msd +/y∷Mcre+/-∷ Plp1-OeX -/- mice, respectively to 

generate experimental mice. 

Metabolic Stress Induction 

Control and OBiden litter mates (when possible) were weaned between postnatal day 19 

and 21 from their parents and placed into new microisolator cages. 2-4 mice were housed per 

cage and allowed lab chow and water ad libidum. At postnatal day 60 (2 months of age) mice had 

their weights recorded and were given 175mg/kg of Tamoxifen dissolved in corn oil and made at 

20mg/ml concentration. To dissolve the Tamoxifen, 100mg of powder was weighed and placed 

into a glass scintillation vial to which 5ml of corn oil was added. The mixture was vortexed then 

heated to 55c and then vortexed every 30min until all the Tamoxifen crystals had dissolved. The 

mixture was cooled to room temperature then stored at 4c for up to one month. The administration 
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of Tamoxifen was through oral gavage and a 22-gauge needle with rounded edge attached to a 

1ml disposable syringe. Mice were divided randomly into two groups; one group was gavaged on 

Monday the other group on Friday of every week. Weights were recorded every week. 

Tissue Collection and Western Blotting 

Spinal cord tissue and cerebellum punches were harvested at the same time as punches 

for western blots and neurochemistry. Dissections were done on fresh tissue where mice were 

decapitated, the brain removed and sliced into 2mm coronal segments and then 1.5mm outer 

diameter punches taken from various brain regions including the cerebellum. The spinal cord was 

extracted through the “spinal cord flush” method by using an 18-gauge needle to push 1 X PBS 

through the spinal cord through the lumbar end after cutting at the level of the cauda equina. The 

spinal cord was then divided into cervical, thoracic and lumbar segments and frozen at -80C along 

with pooled left and right cerebellum punches. 

Before removing samples from the freezer, phosphorylation preservation buffer was made, 

consisting of: 50mM HEPES, 140mM potassium acetate, 4mM sodium acetate, 20mM sodium 

pyrophosphate, 20mM b-glycerol phosphate, 0.1mM PMSF, 0.1% protease inhibitor cocktail 

(Sigma-P8340), and 0.1% of phosphatase inhibitor cocktails 2 and 3 (Sigma-P5726 and P0044) 

made in distilled water (referred to as P-buff). 50µl of P-buff was added to each protein punch on 

ice, and the samples were sonicated with 3 pulse trains 5min apart, and each train consisted of 

5, 1sec pulses followed by a 2sec break. Samples were kept on ice and only removed for the 

15sec sonication step. Protein concentration was determined using the Thermo Scientific Micro 

Bicinchoninic Acid (BCA) assay kit as per the manufacturer’s instructions.  

Samples were diluted in P-buff to 2x the required concentration, then mixed 1:1 in general 

sample buffer (1g SDS, .5f sucrose, 0.98 Tris-HCL, 25ml distilled H2O and pH to 6.8 with 

bromophenol blue) to equal concentrations for each sample. Samples were vortexed 3 times for 

5sec each, then heated at 60c for 5min and then spun down for 3sec. 8, 10 or 12%, 1.5mm thick, 
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SDS-PAGE gels were made in house and cast for 10 or 15 well combs and samples were loaded 

and run at 25mA per gel with water circulated cooling. PVDF membranes were cut to size and 

equilibrated in transfer buffer containing 20% methanol for at least 1 hour prior to transfer. Gels 

were stacked onto membranes and transferred, with cooling, at 500mA for 1 hour. 

Immunocytochemistry 

Mice were anesthetized with 375mg/kg of a 2.5X dose of 2-2-2 tribromoethanol (TBE) 

made in 2-methyl-2-butanol at 40X and diluted in 1X PBS with vortexing to the working 

concentration. The thoracic cavity was opened on the mice and a catheter was inserted into the 

left ventricle while a small cut was made in the right atrium. Next, 4% paraformaldehyde (PFA) 

dissolved in 0.1M Phosphate Buffer pH 7.2 was allowed to flow through the catheter by means of 

gravity for 15min until the mouse was rigged and fixed. Brains were dissected by removing the 

skull from the body, removing the lower mandible and making a vertical cut through the hard 

palate. Next, the ventral skull was broken away until the optic chiasm was revealed and the optic 

nerves were cut rostral to the optic chiasm followed by an incision along the midline of the skull 

moving rostral from the forman magnum to the olfactory bulbs. The skull was then removed, the 

brain extracted and tissue of interest placed in 12.5% sucrose in1X PBS for 6-8 hours followed 

by placing the tissue in 25% sucrose overnight. Finally, tissue was placed in tissue molds, covered 

with OCT embedding media and frozen by slowly submerging in dry-ice cooled 2-methyl butane. 

Frozen tissue sections were cut between -18oC and -20oC and attached to Fisher 

Superfrost Slides and immediately stored in a slide box on dry ice. Slides were maintained at -

20oC until use, at which time they were thawed in three, 10min washes of 1x Phosphate Buffer 

Saline (PBS) pH 7.5. Following washes, one of four permeabolization/blocking steps were used 

to remove lipids and create holes in the membranes for a more thorough and consistent infiltration 

by primary antibodies. 
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Methanol – Thawed slides were placed in methanol (MeOH) at either -20oC or at room 

temperature for 20min. Subsequently, the slides were washed in 1X PBS three times for 10min 

each and then Liquid Blocker Pap Pen was applied in a circle around the tissue approximately 

0.5cm from the tissue. Sections were then blocked in 1x Tris Buffered Saline with 0.5% Glycine 

and 1% Bovine Albumin (TBSGBA) with 2% Goat Serum (2%Gts) for 30min while rocking followed 

by removal of the blocking solution and addition of primary antibodies in fresh TBSGBA-2%Gts 

and setup to rock overnight at room temperature. 

Triton X-100 – Thawed slides were placed in a solution made of 1xPBS and 0.3% Triton 

X-100 for 30min. Slides were then washed three times for 10min each in 1xPBS and then Pap 

Pen was applied around the tissue sections and TBSGBA-2%Gts was added to block the sections 

while rocking for 30min. The old TBSGBA-2%Gts was removed and primary antibodies in fresh 

TBSGBA-2%Gts were added to sections to rock overnight at room temperature. 

Phosphate Buffer/Goat Serum/Triton X-100 – Pap pen is applied around tissue that has 

been thawed in 1xPBS. The permeabolization and blocking steps are combined into one step by 

adding a solution of: 0.1M Phosphate Buffer, 0.3% Triton X-100, and 10% Goat Serum (PBTGS) 

for one hour while the slides are horizontal and not rocking. For the addition of primary antibodies, 

the old PBTGS is removed and antibodies are diluted in fresh PBTGS and added to sections. The 

sections must be maintained horizontal and cannot rock as rocking will cause the high Triton X-

100 content to dissolve the Pap pen and potentially allowing the solution to leak off the tissue 

sections (Ho et al., 2014). 

Primary Antibodies – Primary antibodies are diluted in either TBSGBA-2%Gts or PBTGS, 

depending on the blocking solution, and up to three antibodies are diluted in one solution. 100-

150µl of diluted antibodies is placed on each tissue section and for TBSGBA-2%Gts the sections 

are rocked overnight, but for PBTGS staining the slides are left in the damp chamber on the bench 

top overnight as rocking can cause the Triton to remove the pap pen and allow antibody run off 
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from the sections. Sections from control and experimental animals were also taken for no primary 

controls to test the non-specific secondary staining, and in these cases the tissue received only 

blocking solution with no antibodies for overnight incubation. After staining, slides are washed 

three times for 5-10min in 1x PBS. 

Secondary Antibodies – Isotype specific antibodies were used against primary antibodies, 

and all secondary antibodies are diluted at 1:1000 in TBSGBA-2%Gts. The most common 

fluorophores conjugated to secondary antibodies are Alexa488 (green), Alexa568 (red) and 

Alexa647 (infrared), as well as the addition of DAPI at 1:1000 to all secondary antibody mixes. 

Secondary antibodies were added to sections for 3 hours, with rocking, then washed in 1x PBS, 

3 times for 5-10mintes each. Following washes, the pap pen was removed with a Q-tip dipped in 

chloroform, and then a drop of Vectashield to prolong fluorescence was added to each slide 

before the addition of the coverslips. Coverslips were allowed to settle overnight on the slides 

while at 4C before excess Vectashield was vacuumed off and coverslips sealed to the slides with 

nail polish. Slides were stored at 4C to prolong fluorescence before image acquisition. 

Results 

Transgenes and Protein Expression in the OBiden Colony 

The concept of the transgenes in the OBiden mouse was published in 2011 highlighting 

the main components used to create longitudinal, inducible stress in oligodendrocytes and have 

been reproduced in Figure 1.1 (Gow, 2011). The first is the Plp1-i.msd construct that was 

homologously recombined into the locus for endogenous Plp1 on the X-chromosome, thereby 

replacing Plp1 with a silenced copy of Plp1msd harboring the severe myelin synthesis deficit (msd) 

mutation. The silencing element is a PGKneo cassette in intron 7 of Plp1-i.msd and is flanked by 

LoxP sites in the same orientation to facilitate excision of the PGKneo cassette upon exposure to 

Cre recombinase. The next transgene is the CreERT2 transgene under control of the myelin basic 

protein (MBP) promoter, making it specific to myelinating, and not premyelinating,  
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Figure 1.1 – Transgenes in the OBiden Mouse 

 

Figure 1.1– A) Schematic of the transgenes in the OBiden mice. Top is the knock-in 

inducible allele of Plp1-i.msd that upon expression causes metabolic stress in 

oligodendrocytes. The middle transgene is Mbp promoter/enhancer driven CreERT2 that can 

excise antisense PGKNeo cassette in the top transgene. The bottom transgene is a 20kb 

genomic fragment of Plp1 from Klaus Armin-Nave’s transgenic #66 line to compensate for 

Plp1-i.msd suppressing normal Plp1 expression. 
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Figure 1.2 – Protein Characterization of End Stage Myelin 

 

Figure 1.2 – A) Representative western blots from OBiden cerebellum at 12 months 

of age. Included are blots from wildtype (WT) non-gavaged animals and control, gavaged, 

mice. B) No significant differences were found in the levels of the major myelin proteins 

PLP1, MBP or CNPase at 12 months of age (2-way ANOVA). C) Representative western 

blots from OBiden spinal cord to analyze myelin protein expression in control, OBiden and 

Plp1-ko mice. D) Quantification of blots from C, that show a significant loss of PLP1 in Plp1-

ko mice as expected. No changes to MBP or CNPase were seen at 12 months (n = 4 per 

group for each group). 
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oligodendrocytes. The Cre protein is expressed in oligodendrocytes but bound to HSP90 and only 

released upon the administration of the estrogen receptor agonist, Tamoxifen. These transgenes 

allow for induction of metabolic stress in oligodendrocytes, but the Plp1-i.msd construct creates 

a functional Plp1-ko mouse by suppressing Plp1 translation through double stranded RNA 

mediated repression of the gene. To alleviate this feature, as Plp1-ko mice are known to undergo 

age related degeneration, we added a third transgene to compensate for the loss of Plp1 gene 

expression. This transgene was a Plp1 overexpressor (Plp1-OeX) line #72 originally developed 

by Klaus Armine-Nave and  

Carol Readhead that in the homozygous state leads to overexpression of the Plp1 protein 

at 150-170% of wildtype levels (Readhead et al., 1994). We bred in the transgene to a 

heterozygous state to reduce its level of Plp1 production, but still maintain a level of Plp1 

indistinguishable from wildtype mice (Figure 1.2). The addition of the Plp1-OeX transgene was 

critical to removing any potential phenotype from the Plp1-i.msd transgene as it causes the mice 

to become functional Plp1-kos when bred to homozygosity. At 12 months of age (12M), control 

and OBiden mice had comparable levels of the three major myelin proteins, PLP1, MBP and 

CNPase, compared to wildtype (WT) mice in punches obtained from the cerebellum of aged mice 

(Figure 1.2 A,B). There was increased variability across samples from the cerebellum, potentially 

due to the heterogeneity of the tissue and the location of the punches. Additionally, we compared 

control and OBiden mice to functional Plp1-ko mice, that did not contain the rescue Plp1-OeX 

transgene, to confirm two processes. First, that the Plp1-i.msd transgene did indeed suppress 

endogenous Plp1 expression even at 12 months of age and second, that the Plp1-OeX transgene 

restored expression in experimental animals and that Plp1 expression was maintained through 

end stage at 12 months (Figure 1.2 C,D). In Plp1-ko mice it would have been optimal to test for 

expression of Plp1msd protein to confirm expression when the Cre protein is released upon 

administration of tamoxifen. However, the mutant Plp1 protein has a high level of toxicity and can 

cause cell death  
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Figure 1.3 – Longitudinal Auditory Brainstem Analysis in the OBiden Mouse 

 

Figure 1.2 – A) Representative ABR traces from 2 month old animals. Peaks used 

for analysis are indicated as Wave I for cochlea, Wave II for cochlear nucleus and Wave V 

for medial lemniscus. B) Quantification of peripheral conduction velocity (Wave II-I) and 

central conduction (Wave V-II) in 2 month old animals in Control, OBiden and Plp1-ko 

animals (n = 3, 6, 6) that show a slowed central conduction only in Plp1-ko mice. C) 

Quantification of conduction velocities shows slowing only in the central component in 

Plp1-ko animals (n = 5, 4, 2) 
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Table 1.1 – Auditory Brainstem Response 2-way ANOVA Main Effects 
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Table 1.2 – Auditory Brainstem Response Post-hoc t-tests 
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within hours of induction of expression as seen in cell culture and constitutive expression of 

Plp1msd in mutant mice (Gow et al., 1998).  

Auditory Brainstem Analysis of OBiden Mice 

After confirming the OBiden mice maintained normal expression levels of major myelin 

proteins throughout the experiment, they were tested for electrophysiological function in the 

auditory brainstem to confirm the function of the nervous system was not disrupted. This involved 

testing the auditory brainstem response (ABR) that measures the compound action potential 

(CAP) firing through different brainstem nuclei as a result of stimulation through sounds of various 

frequencies and intensities (Shah and Salamy, 1980). The ABRs have a characteristic waveform 

after presentation and recording through sub-dermal electrodes, namely five peaks that occur at 

specific timeframes after presentation (Figure 1.3.A). Three representative waveforms from 

control, OBiden, and Plp1-ko are shown in Fig.1.3.A, with three peaks used for analysis 

highlighted in each genotype. Wave I is the initial firing of the spiral ganglia in response to 

stimulation from the cochlea, followed by Wave II at the cochlear nucleus that are the first set of 

neurons with the CNS as opposed to the PNS. The latency difference between Wave I and Wave 

II (i.e. Wave II-I) is the temporal component of the peripheral nervous system as signals travel on 

PNS myelinated nerves and there should be no difference in latency between any group of animal 

at any ages as we are not affecting the PNS myelin. At 2 month and 6 months of age, there is no 

difference between any genotype in the latency from Wave II-I, indicating that there is no 

developmental or developing deficit in peripheral signal transduction (Figure 1.3.B,C). Next, the 

CNS component of the ABR was analyzed, represented by the difference in latency between 

Wave II and Wave V, where Wave V is likely an ascending CAP from the brainstem to the inferior 

colliculus (Wenngren and Anniko, 1988). Represented by Wave V-II, in Fig. 1.3.B,C the control 

mice have decreasing latencies as the sound intensity increase from 40 to 80 dB SPL at both 2 

and 6 months. The Plp1-ko mice show a significant increase in latency at all intensities at 2 and 

6 months indicating a slowing of CAP processing through the auditory brainstem as a result of 
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knocking out Plp1. As this phenotype could be present in other CNS areas, it was important to 

rescue the phenotype through the use of the Plp1-OeX transgene to complete the OBiden mouse 

genetics. As it restored protein levels as seen in Fig. 1.2, the transgene also restored conduction 

velocity to the OBiden mice, where no difference is seen in Wave V-II latency at 2 months before 

tamoxifen gavage and activation of metabolic stress, and even at 6 months, with 4 months of 

weekly gavaging, the conduction velocity remained unchanged compared to controls (Figure 

1.3.B,C). This indicated that not only does the Plp1-OeX  transgene rescue PLP1 protein levels, 

but that it functionally rescues a gross conduction velocity deficit even after the beginning of 

gavage. Also, this shows that at least through the first 4 months of gavage (from 2 to 6 months of 

age) no significant degenerative consequences occur between 2 and 6 months of age, indicating 

relatively mild or no pathology at least in relation to the brainstem area. 

Metabolic Stress in Aged OBiden Mice 

The hypothesis and principle of the OBiden colony rests on the induction of primary 

metabolic stress chronically throughout the lifespan of the animals. As the central tenet of the 

model, it was necessary to identify the expression of metabolic stress markers in oligodendrocytes 

of aged, gavaged mice to confirm the expression of metabolic stress markers and the continued 

efficacy of the main Plp1-i.msd transgene. 

Frozen coronal sections from 12 month mice at the level of the optic chiasm/optic tract 

were used to stain for mature oligodendrocytes with the marker CC-1 and one of the transcription 

factors activated during metabolic stress and the UPR, activating transcription factor 3 (ATF3). 

This staining procedure has been used by our lab to identify stressed oligodendrocytes in white 

matter tracts in the CNS (Gow et al., 1998; Southwood et al., 2016). In the optic tracts of mice, 

there was no difference in the total number of CC-1+ cells between control or OBiden mice 

indicating that if we are stressing oligodendrocytes and causing cell death, precursors are still 

adequately repopulating the mature cells, or the stressed oligodendrocytes have not undergone 

cell death yet (Figure 1.4A-C) (Mann-Whitney t-test, p<.99). However, there was significant  
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Figure 1.4 – Metabolic Stress in Oligodendrocytes of the OBiden Mouse 

 

Figure 1.4 – A) Representative staining images from optic tract of 12 month old control 

and OBiden animals showing all mature oligodendrocytes (CC-1; red) and nuclear ATF3 staining 

in cells undergoing metabolic stress (green; arrows). B) There was no difference in 

oligodendrocyte density in the optic tract between control and OBiden. C) There was a significant 

increase in the number of ATF3+ cells and ATF3+/CC-1+ double positive cells in the OBiden 

animals compared to controls (n = 4 animals per group and 3 slides per animal) 
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Table 1.3 – White Matter Oligodendrocytes Metabolic Stress Statistics 
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increase in the total number of ATF3+ cells in the optic tract as well as a significant increase in 

the number of ATF3+/CC-1+ double positive oligodendrocytes (Figure 1.4C) (2-way ANOVA, 

F(1,6)=29.4, p=.002). This shows the OBiden mice continue to shows signs of metabolic stress 

in oligodendrocytes even after multiple months of gavage and multiple rounds of stress activation 

in white matter tracts throughout the CNS. 

Discussion 

The development of the OBiden mouse represents a change in direction from the historical 

and previously utilized models of the neurodegenerative disease, MS. While most of the research 

has been focused on the response, adaptation and suppression of the adaptive immune system 

to artificial stimulation or stress to the CNS, the OBiden model utilizes more biologically relevant 

pathology to attempt to recapitulate the disease. To achieve that goal, the necessary transgenes 

to induce metabolic stress in mature oligodendrocytes were inserted or recombined into the 

experimental mice. As will all transgenes, it was necessary to test the function and stability of the 

transgene to confirm that any future phenotypes we identified were not due to aberrant expression 

or lack of expression of critical proteins as well as the gross function of representative portions of 

the CNS. 

The analysis of the OBiden mice confirmed that the recombination even to insert the Plp1-

i.msd transgene did suppress Plp1 expression and that the addition of the Plp1-OeX did restore 

normal levels of PLP1 protein, critically, without leading to an overexpression phenotype, the 

results of which are known to be degenerative. Additionally, chronic metabolic stress in mature 

oligodendrocytes is created through induction of the Plp1-i.msd transgene as given by the 

expression of ATF3 in oligodendrocytes out to the end point of 12 months of age. Unlike other 

models that create substantial, acute attacks or stresses on the CNS that might replicate some 

features of an acute MS attack, the OBiden model represents are the more chronic phases of the 
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disease. These phases are potentially times when subclinical damage is accumulating within the 

CNS that triggers, or is exacerbated by an acute immune or degenerative event. 

The ATF3 analysis focused on 12 month old animals to confirm the long term maintenance 

of metabolic stress in oligodendrocytes. It is known that under nominal physiological conditions, 

CHOP and ATF3 will not be expressed in oligodendrocytes (Gow et al., 1998). Identification of 

UPR markers in aged animals likely indicates that metabolic stress in present at younger ages. 

Because of the chronic, long-term model utilized the focus was on an end stage analysis rather 

than earlier time points. A future analysis at 2 months of age baseline would be appropriate to 

confirm the lack of metabolic stress prior to activation of the transgenes. 

Another facet of the OBiden model of interest was the integrity of the information 

processing pathway in the auditory brainstem. This pathway represents a mixture of small and 

large myelinated fibers, and conduction changes or block would manifest as alterations to the 

timing of different waves (Denninger et al., 2015; Maheras and Gow, 2013). In addition, the ABRs 

highlight a critical point in the importance of maintaining proper PLP1 levels until we initiate 

metabolic stress. The analysis was not carried past 6 months due to the fact that as mice age, 

their hearing thresholds increase making reliable ABR analysis difficult without prohibitively large 

numbers of mice to screen for those that maintain hearing levels. 

The Plp1-ko mice do not express detectable levels of PLP1 protein, and although they 

display no overt signs of degeneration, at 2 months there is already an alteration to their ABRs 

seen in the delayed Wave V. This would make them dubious subjects for behavioral or 

neurochemical studies as this information processing would also occur in other myelinated tracts 

and result in potentially significant changes compared to mice expressing normal levels of PLP1 

and confound any additional pathology. As the OBiden mice displayed normal levels of PLP1 and 

show no ABR processing deficits, they are suitable for further behavioral and degenerative studies 

where any detectable pathology should be solely due to the metabolic stress in myelinating 

oligodendrocytes.   
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CHAPTER 2 – IN VIVO BEHAVIORAL CHARACTERIZATION OF THE OBIDEN 
MOUSE 

Introduction 

The use of animal models for neurological diseases is critical to gain insight into 

degenerative conditions that are difficult that study and test in human populations. Through the 

years, it has become critical to be able to evaluate animal models in vivo for behavioral deficits in 

parallel to those seen in patients, to allow for analysis of how the deficits arise and how best they 

may be mitigated. This has led to the development, and refinement, of a number of behavioral 

testing paradigms for animal models of disease to allow researchers to better evaluate their 

models and their relevance to human pathophysiology. 

This is especially true in MS research, where much of the research has focused on the 

massive immune infiltration that occurs within white matter lesions, to the exclusion of what is 

now understood to be extensive gray matter pathology (Bjartmar and Trapp, 2003; Hasselmann 

et al., 2016; Hemmer et al., 2015; Pryce et al., 2005). This means that there is relatively limited 

behavioral testing data from current MS models, in part due to different focus, but also because 

many of the models undergo significant, debilitating physical degeneration which makes 

behavioral testing nearly impossible. Evidence from early work on MS through the mid 20th century, 

and recent mounting evidence regarding the cognitive symptoms patients find most debilitating 

as the disease progresses, leaves a significant opening to develop a model that recapitulates the 

cognitive changes seen in MS and evaluate their underlying pathology (Adams and Kubik, 1952; 

Llufriu et al., 2014).  

The extent of behavioral testing is limited mostly by what can be attributed to specific 

neuroanatomical pathways associated with conditions, or those tests that we known to react to 

treatments that are efficacious in patients (Acharjee et al., 2013; Can et al., 2012; Chen et al., 

2015; Kitamura et al., 2015; Pardini et al., 2014). This includes testing for depression-like 

endophenotypes, spatial memory, novel object memory, recognition memory and anxiety related 
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phenotypes are some of the behaviors that can be tested, and those can be subdivided further 

depending on the level of specificity required (Eagle et al., 2015; Morellini et al., 2010; Porsolt et 

al., 1977).  

Materials and Methods 

Tail Suspension 

For the apparatus, two retort were placed 45cm apart with bar held between them 40cm 

above the desktop. Behind the stand 20cm distant was a dark green curtain (mouse cage cover) 

was spread out to create and even background for the camera and to create a consistent, static 

view for the mice. A camera was placed 90cm away from the stands, with its line of sight 

perpendicular to the bar between the retort stands. Before beginning the test, a cylindrical piece 

of thin plastic was cut that measured 1cm long by 0.5cm and this was placed over the tail of the 

mice, resting at the base of the tail to prevent them from climbing up their tail during the test. 

Finally, a piece of tape 10-15cm long was measured and cut to attach the mouse to the horizontal 

bar. For the test, the mouse was removed from its home cage, the plastic cylinder was placed 

over its tail, then the last 0.5cm of the mouse tail was bound with tape and the free end of the 

tape was wrapped over the bar between retort stands so that the mouse was in the middle of the 

camera’s FOV with legs facing the camera. A timer was started and the mouse was allowed to 

hang, with video recording, for 6min, at which point the video was stopped first, the mouse 

removed from between the stand and the tape cut gently from the tail. For the analysis, all 6min 

of the videos were analyzed at 2x speed and the time immobile was quantified as times when 

there was no movement form the mouse, only small paw motions, or swinging from the base of 

the tail without torso bending. Any attempts at climbing, running like behavior, and torso twisting 

were considered “escape-like” behaviors and were counted as movement. An independent, 

blinded rater was utilized to confirm the original immobility times and scoring criteria. 
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Learned helplessness forced swim test  

Forced swim was performed over two days, the first was a training/acclimation day to 

overcome the novelty and shock of the test and the second day was used to assay for the 

helplessness behavior as quantified by immobility time, similar to the original testing paradigm 

(Porsolt et al., 1977). The test container was a 4-liter glass beaker, filled to 3 liters so the water 

depth would be 16cm and the surface of the water was 10cm from the top of the beaker so the 

mice cannot touch the bottom nor escape the container. Water temperature was 24-26C for each 

mouse, and 4 mice could be run between changing or adjusting the water temperature. On day 

1, mice were gently scruffed, still allowing most movement but the inability to turn and reach the 

handler, then gently placed tail first into the water to prevent the mice from sinking below the 

surface. Mice were video recorded for 10min in the water and then removed to a clean cage 

containing no bedding, and instead a blue absorbent pad was in the cage and the cage was on a 

heating pad turned to high to maintain a warm, dry environment for the mice to recover before 

returning to their home cage. On day 2, the mice were again placed in the water and recorded 

but only for 6min, after which they were removed to the dry heated cage. The first 6min of day 1 

and the full 6min of day 2 were analyzed at 2x video speed for floating only or small, one rear leg 

only kicks as the sign of immobility.  

Inverted Screen 

This was a modified version of Kondziela’s Inverted Screen test (Deacon, 2013). A 40cm 

x 40cm x 10cm deep frame was made out of 2in x1in wood planks, and a 19-gauge wire screen 

composed of 1.2cm x 1.2cm squares was attached to one side across the opening of the wooden 

square. This creates an area to place the mice so they are enclosed by the wooden frame while 

on the wire grid. On the outside of the grid we painted lines to designate areas 5 squares x 5 

squares (6cm x 6cm) for use in movement counting. For the test, a large, deep (40cm) plastic bin 

was lined with soft blue pads as a cushion if the mice fall. A mouse was placed in the center of 

the screen, and then the screen was rotated over 2-5sec so as not to jolt the mouse and give it a 
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chance to cling to the wire screen as it was inverted. If a mouse fell off immediately after inversion 

it was given a second chance at the test, two immediately falls in a row were counted as a score 

of 0. Once inverted, the test lasted for a maximum of 2min, and if the mouse fell before the 2min 

end point the time was recorded. In addition, the painted grid was used to asses for movement 

while inverted where the number of times both front paws crossed a painted line was counted to 

give a movement score. Each mouse was run once a week before gavage and the time and 

movement scores were recorded. To calculate cumulative scores, the time score was converted 

to a 1-10 scale: 1=1-10sec, 2=11-20sec, 3=21-30sec, etc. up to 9=81-90sec and 10=91-120sec, 

and this gave us a maximum score of 10. With initial testing we found that the maximum number 

of lines a mouse would cross in 2min was ~30 lines, so we divided all movement scores by 3 

which converted them to an approximate 1-10 scale to match the time scores. This means the 

mice could achieve a cumulative score from 0-20. Since each mouse was being tested weekly 

we had running scores for each mouse from which we could calculate mean and median scores 

per mouse and at each age from the 8-week start point until the 52-week end point. We found the 

median score better reflected the overall performance of the mice as mean was susceptible to 

weighting due to extreme scores outside the typical performance of the mice, so each mouse had 

its weekly score normalized to its overall median score. This normalization meant each mouse 

score should fluctuate around 1, and allowed us to identify weeks when the score deviated from 

one. We looked for deficits in the mice defined by a score of 1 on one week followed by a 

score >.33 (3x reduction in the score), and then a return to a score of approximately 1 following 

the dip. This gave us a characteristic signature, "V” shaped on graphs, which we looked for across 

all mice and quantified the number of deficits in each genotype compared to the number of total 

weeks analyzed across all mice.  

Win-Shift T-Maze 

The T-maze apparatus was custom made to the size of mice following published protocols 

for T-maze design (Deacon and Rawlins, 2006). The T-maze was made of clear plastic to allow 
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for the alteration of color or pattern on the walls of the floor to guide the mouse in correct arm 

identification. Each arm of the maze was 30cm long x 10cm wide x 20cm high so the mouse could 

not see the surrounding environment, and the maze was small enough where no large open 

spaces were present for the mice to avoid. At the end of the start arm, a 7cm long divider was 

placed between the 2 goal arms, this allows for more directed decisions by the mice and does not 

allow them to observe both arms simultaneously, as is the case without the divider. Finally, 

guillotine doors were placed at the entrance to each goal arm so the arm could be closed off from 

the rest of the maze. For training and testing, the walls and floor of each goal arm were made 

unique, in our experiments one goal arm had a horizontal stripe pattern and the other goal arm 

had large 3cm circles to create a polka dot pattern. Both patterns were equilibrated for overall 

gray intensity so neither pattern caused a darker environment than the other pattern, which could 

influence mouse arm choice. An additional cue was the floors of the goal arms which were 

covered in 29cm x 9.8cm bench coat paper with either the smooth or rough side of the paper 

facing up to differentiate the texture of the floors. To enhance the drive for the mice to leave the 

start arm, there was a spotlight 40cm above the mice focused on the area where mice where 

initially placed, and the goal arms of the T-maze were covered to create a darker environment. 

The T-maze procedure was run over 3 days, the first was used as a training day to acclimate the 

mice to the maze and to learn the paradigm. In the first trial of each day, the right goal arm was 

closed off and a piece of food from the home cage was placed at the end of the left arm as 

incentive, and the mice were placed in the start arm then allowed 2min to enter the left goal arm. 

After entering the arm, the guillotine door was closed and the mouse was allowed 30sec to explore 

before being removed and placed back in its home cage. The T-maze was not cleaned between 

trials of a single mouse, but the floor was changed and the maze cleaned with water than 70% 

ethanol between mice. On the following trial, both arms were open for the mouse, but the food 

incentive had moved to the right arm. Again, the mouse was given 2min to explore and if it chose 

and arm the guillotine door for that arm was closed and the mouse confined for 30sec in the arm 
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before moving back to its home cage. 9 more trials were repeated on the training day and for 

each trial the food incentive was in the opposite arm compared to the previous trial. The arm 

chosen and time to completion was recorded for each mouse. On days 2 and 3, the initial trial 

was the same where only the left arm was open for the mouse, and on all subsequent trials both 

arms were open and the food incentive moved to the previously unoccupied arm. Again, choices 

and time to completion were recorded for each trial and the percent correct alterations (i.e. the 

mouse correctly followed the food and changed arms) was calculated for day 2 and day 3, then 

the average across both days was used in analysis. 

Novel Object 

Novel object testing was performed in a 61cm x 61cm black Plexiglas box with floor. No 

cues were used inside the box, but external cues including the camera mount and holder and 

walls of the room were visible to the mouse. However, the box was placed in the middle of the 

room with equivalent lighting direction and intensity (~100 lux) to avoid biases and give a 

consistent arena. Novel object consisted of 3 trials over 1 day, the first trial was a training trial to 

acclimate the mice to the arena and remove novelty by allowing 10min of free exploration, which 

was video recorded for future analysis if needed. The maze was cleaned with water than 70% 

ethanol following every trial. There was then a 30min break between trials, and before the second 

trial two identical objects (round plastic ramekins, 8cm in diameter, 4cm high, with ridges along 

the outside and a 20-30g stainless steel bolt glued inside the ramekin to hold it down) were placed 

opposite to each other in the corners of the arena 8-10cm from the walls. The mouse was placed 

in the middle of the arena, not facing any object and allowed 10min to explore while being video 

recorded. After the trial, the mouse was moved back to its home cage and the arena and objects 

were cleaned with water than 70% ethanol. After another 30min break, the final trial began with 

one object from the previous training trial (familiar object) and a new object (glass star-shaped 

candle holder, 7.5cm in diameter, 2.5cm tall, called novel object) placed in the same locations as 

the previous trial so one corner has a novel object, one corner has a familiar object. The mouse 
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is placed in the middle of the arena facing the same way as the second trial and allowed to explore 

for 5min while being video recorded. For analysis, we used Ethovision XT Ver. 8.5 (courtesy of 

Dr. Shane Perrine, Dept. of Psychiatry and Behavioral Neurosciences), which allowed us to define 

the entire maze, the quadrants of the maze, and areas around the object for automated 

quantitation. The area around the objects was defined as a circle, encompassing the object that 

had a diameter 2.5x greater than the object (this was an area large enough for an entire mouse 

body so we can track either nose point or center point for analysis). The mice were tracked with 

a center and nose point tracking, and nose point was used for the majority of analysis to track 

time around objects and time in different quadrants, where center point was used for velocity and 

distance measures as center point has less tendency to undergo quick changes that could 

influence velocity and distance measures. To quantify the novel object preference, we used a 

metric called the exploratory preference index; 

(EPI)= !"#$	&'	()*$+	,-.$/'
!)'&+	'"#$	&'	,-.$/'0

∗ 100  

and substituted Object 1 or 2 for Novel Object in the numerator for Trial 2 analysis to determine if 

there was a preference between similar objects.  

Spatial Memory 

Spatial memory was run in the same in the same box as novel object, however, we had a 

clear Plexiglas insert with patterns attached to it so the smooth side of the Plexiglas faced the 

mouse and the patterns were between the two layers of Plexiglas. This allowed us to add patterns 

to the walls of the spatial memory chamber that are critical as reference points for the mouse 

when determining locations within a distinct environment. Spatial memory was run with the same 

timing as novel object, with a similar paradigm. It was a one-day test, trial 1 was a 10min training 

trial in the empty arena then a 30min break, trial 2 was 10min and had two identical objects placed 

in opposite corners of the maze followed by a 30min break, and trial 3 was 5min and one of the 

objects moved positions to a new corner of the maze. Between each trial the maze and objects 
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were cleaned with water followed by 70% ethanol. All trials were video recorded for analysis with 

Ethovision, with the same parameters as novel object with quadrants, and areas around the object 

defined for analysis. 

Barnes Maze 

An opaque, white, circular platform 36in in diameter, with 2in holes driller around the 

circumference and each hole is centered 3in from the edge of the platform. Under one hole an 

escape-goal box was placed that measured 4in x 4in x 2in deep with a fine wire mesh ramp for 

the mice to use to enter the box. Mice were first trained to identify the goal box as an escape by 

placing the mice inside the goal hole, then near the goal hole so they would enter the box 

voluntarily. Barnes maze testing lasted for a total of 11 days, with 3 x 5min trials per day per 

mouse, with the following days: days 1-5 were training days for the mouse to learn the location of 

the goal hole and to enter the goal hole in the minimum time with the minimum number of errors. 

Day 6 was a 90o rotation probe day where the platform was rotated 90o clockwise, and the mouse 

run as before where it should return to the location it was trained to on days 1-5. Day 7 was a 

retraining day with the maze in its original orientation, and day 8 was the curtain probe day where 

a curtain was hung around the entire circumference of the maze to block the visual cues that the 

mouse was using to find the goal box before to test if there was any intrinsic property to the maze 

that allowed the mice to locate the goal hole. On day 9, mice were retrained the same as on days 

1-5 and day 7. Day 10 was a change where the goal hole was moved 180o from its original location 

and the mouse was trained to find the new location, this day was meant to test how well the mice 

could learn a new location and day 11 was a probe day to see if the mice remembered the 180o 

change defined by the latency it too the mice to reach the new goal hole location. Latency to reach 

the correct goal hole was recorded each trial, as were the number of errors the mouse made, 

defined by poking part or all of its head or body through and incorrect hole. All trials were also 

video recorded from directly above for subsequent analysis if necessary. 
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Rotorod 

A Med Associates Rotorod was used for testing with an acceleration set to maximum 

giving a ramp speed from 4-40 RPM over a course of 5min (300sec). The first day of rotorod 

analysis consisted of a training day to teach the mice to walk and maintain balance on the rotorod 

and to avoid falling off the bar. As an aversion, a water/ice mixture was placed below each mouse 

where they would land if they fell off the bar. The rotorod was turned to the slowest speed and 

the mice placed on the bar until the walked for approximately 30sec at 4 RPM. Mice that gave up 

immediately or jumped off landed in the ice bath and were placed back on the bar up to 5 times 

or until they walked continuously on the bar. On the subsequent testing day(s), the rotorod is 

started on the non-accelerating lowest speed so all mice are facing forward and walking at speed. 

Then the rotorod is switched to acceleration and as it increases speed the time the mouse falls 

off the bar is recorded and the mouse is removed back to its home cage. If the mouse holds on 

to the bar and rotates one full cycle then continues walking, the time of the spin is noted but the 

mouse is allowed to continue, this is also true if the mouse completes two spins but continues to 

walk. However, if the mouse completes 3 or more spins at once the time is noted and is counted 

as a fall and the mouse is finished, even if it recovers after numerous spins as this is considered 

a sign of inability to accurately balance and walk in the test. Three trials over 300sec are run per 

day and the average across all three trials is reported as the time for that day.  

Fear Conditioning 

Fear conditioning was run in an 18cm x 18cm x 30cm arena with alterable walls, overhead 

recording camera and floor within an insulated, sound deadening chamber (Coulbourn 

Instruments Habitest System; Holliston, MA). Testing consisted of a training day with 5 shock 

trials separated by 100sec of rest and the following parameters were used for the trials and 

following shock; multi-Hz, 80 dB-SPL hiss tone for 20sec, then 2sec of a 0.4-0.6 mA foot shock. 

For the extinction days the following paradigm was used; 20sec hiss tone followed by 40sec of 

recovery, repeated 10 times per day for 12 days. The entire box was cleaned with 70% ethanol 



www.manaraa.com

 

 

45 

between mice and 10% bleach between training and extinction days while being allowed to air 

dry overnight to remove contaminating odors. To analyze the extinction days, each 20sec hiss 

period was broken in 5 x 4sec bins and averaged together, while the 40sec recovery period was 

broken in 4 x 10sec bins and averaged. (Freezeframe 3, Coulbourn Instruments). Contextual 

freezing was the percentage of time spent immobile during the first 20sec exposure to the arena 

on the day following fear training. Tone freezing was the average freezing across a day for trials 

2-9 (trials 1 and 10 were excluded to obtain a consistent average not including initial sound/box 

stress from trial 1 or long term acclimation form trial 10).  

Results 

Physical Deficit Testing 

To investigate the OBiden mice, cohorts of male mice were tested longitudinally beginning 

at 2 months of age prior to the first round of metabolic stress induction, then at 6 and 12 months 

of age after moderate and long term exposure to chronic metabolic stress. The behavioral testing 

was used to identify if and when phenotypic degeneration could be detected in the mice and its 

similarity to MS deficits. To this end, the mice were tested for deficits in 3 broadly defined 

functional groups, physical, emotional and cognitive. For the physical testing the inverted screen 

test was used in large due to the ease of setting up and running the test and the ability to run the 

test weekly to allow for increased temporal resolution of phenotypes. Because the inverted screen 

test uses both movement and grip while inverted to assess motor function, it should either reveal 

subtle deficits in one attribute or a more pronounced phenotype if both processes fail (Deacon, 

2013). The testing for changes to emotion-like pathways in the mice was more complex and subtle 

as surrogate markers and tests must be used to assess the animals apparent state. In this light, 

well defined and pharmacologically validated tests were used to asses for an underreported 

symptom in MS, namely the development of a depression-like endophenotype (Can et al., 2012; 

Porsolt et al., 1977). Finally, one of the most complex pathways and behaviors in the CNS was  
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Figure 2.1 - Longitudinal Inverted Screen Testing in the OBiden Mouse 

 

Figure 2.1 – A) All examples of 3-fold drop in mean score followed by recovery from 

control and OBiden mice, with the average and SEM plotted as black line over individual gray 

traces for OBiden mice. B) Number of weeks with a relapse (drop) and number of weeks 

without a drop shows a significant increase in the number of deficit weeks in OBiden animals 

compared to controls. C) Representative plots from individual mice with arrowheads indicating 

the weeks of deficit in the OBiden animal.  
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tested, one that is particularly detrimental to MS patients in later stages of the disease, changes 

to cognition, learning and memory (Kitamura et al., 2015; Llufriu et al., 2014; Pardini et al., 2014). 

With the complexity of the system, multiple tests are needed to parse out individual functional 

units to provide a view of exactly where the deficit in the animals might be developing. For this we 

used a series of tests; spatial memory and Barnes maze for spatial learning and memory, novel 

object and Win-Shift T-Maze for novel discrimination memory and fear conditioning for negative 

stimulus and amygdala associated memory (Brown et al., 2000; Chung et al., 2015; Deacon and 

Rawlins, 2006; Henderson, 1968; Shimai, 1982; Shipton et al., 2014; Şık et al., 2003). 

The results for the inverted screen testing of physical ability changes in the mice revealed 

an interesting, transient phenotype remarkably similar to MS. In MS, patients will often experience 

transient paralysis or loss of feeling in a limb, or loss of visions only to see the function recover to 

near-normal levels given enough time. For MS patients they are scored on a scale called the 

extended disability scoring system (EDSS) where these lesions that develop can appear as an 

increase in the EDSS (increasing scores represent increasing disability) followed by a recovery. 

In the mice, our scoring system is inverted where a high score is best and low score is worse, 

however, we identified the same pattern as seen in MS patients, namely consistent weeks of 

normalized scores followed by a drop-off for one week, then a subsequent recovery (Figure 

2.1A,C). These deficit weeks were observed once across all control animals, but multiple OBiden 

animals at multiple ages displayed the deficit phenotype, indicating the increase is unlikely to be 

due solely to age, but more to the degenerative nature of the model (Figure 2.1B). In addition, the 

inverted screen test benefited from our ability to compare a single mouse throughout its 

experimental lifetime, increasing our power to detect changes and mirroring MS patients as 

closely as possible. 

Depression-Like Endophenotype in OBiden Mice 

Next, testing involved running cohorts of mice at key ages to determine if they developed 

emotional disturbances similar to those reported in MS. The cohorts of mice at each age point  
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Figure 2.2 - Development of Depression-Like Endophenotype 

 

Figure 2.2 – A) Tail suspension testing revealed an increased immobility in OBiden mice 

at 6 months maintained through 12 months of age. Controls did not show an increase in 

immobility across time showing the immobility increase is not age related (# - prior to initial 

Tamoxifen induction). B) Forced swim testing showed a concurrent increase in immobility at 6 

months, similar to tail suspension, that was maintained out through 12 months of age. 
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Table 2.1 - 2-way ANOVA Analysis of Tail Suspension and Forced Swim Tests 
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were different, since tests involving stress to the animals cannot be repeated longitudinally, 

however, each cohort did undergo both the tail suspension and forced swim test at the same age 

to minimize the number of animals and for consistency across tests. The OBiden mice showed 

no difference from control animals at baseline testing, prior to gavage, at 2 months of age in either 

test (Figure 2.2A,B). Therefore, the transgenes in the mice do not effect development or cause a 

disruption to behavioral processing before the onset of oligodendrocyte metabolic stress. When 

the tests were run again on a cohort of mice at 6 months of age (i.e. after 4 months of weekly 

gavage) there was a significant increase in the immobility of the OBiden mice compared to 

controls in both tests (Figure 2.2, Table 2.1). This deficit was maintained out through 12 months 

of age, indicating the development and maintenance of a depression-like endophenotype in the 

OBiden mice not seen in control animals. An additional comparison was run on the Forced Swim 

data because the test is run over two days. The forced swim test is also a measure of learned 

helplessness, a measure of how quickly mice will become immobile when exposed to the same 

scenario on multiple occasions (Porsolt et al., 1977). To test this, the time the mice spent immobile 

on Day 1 was also quantified and compared to the Day 2 immobility time within genotypes (Supp. 

Figure 2.1)(Supp. Table 2.1). Using upaired t-tests between groups, there was a significant 

increase in immobility on Day 2 in the OBiden mice at 6 and 12 months of age (Supp. Figure 2.2). 

No group at 2 months, prior to gavage, showed a difference and Control mice at 6 and 12 months 

of age did not show a difference. Together, this shows that only the OBiden mice after the 

induction of metabolic stress are susceptible to learned helplessness, whereas Control mice are 

not. This is the first indication that there are degenerative changes within the CNS of OBiden mice 

as a result of the oligodendrocyte metabolic stress. However, as depression in humans and the 

endophenotype in mice can be the result of pathology to numerous pathways or nuclei, further 

testing was performed to identify specific areas of degeneration. 
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Recognition and Novel Object Memory Deficits 

Arguably one of the most debilitating features of MS, and a pathological feature of many 

neurodegenerative diseases, is the loss or dysfunction of memory components as the disease 

progresses. These are often untreatable, irreversible deficits that represent a major burden and 

intense area of research focus. Therefore, the OBiden mice were run through a battery of memory 

and cognition related tasks to isolate and identify specific areas of deficits. The first set of tasks 

involved the correct identification and investigation of novel areas or novel objects within the 

environment of the mouse. This memory pathway primarily involves reciprocal connections 

between entorhinal and perirhinal cortices and the dorsal hippocampus, so deficits in the testing 

will indicate specific areas to investigate for pathology. 

To begin, the mice were tested using a 1-day novel object paradigm to evaluate their short 

term working memory and cognition. Initially, the mice are allowed to explore a 61cm X 61cm 

open field arena for 10min to acclimate themselves to the environment. 30min after the 

acclimation trial mice were placed back in the box with 2 identical objects for the training trial 

(Figure 2.3A, Top). Following another 30min interval, the mice were placed back in the box with 

one object (O-1) replaced with a novel object (N.O.) but one familiar object (O-2) remaining 

(Figure 2.3A Bottom). For the analysis, total time around both objects was used to create a ratio 

(preference index) from 0-100, in the case of training trials a score of 0-49 represents a preference 

for O-1, and 51-100 represents a preference for O-2. There is no difference between control and 

OBiden animals at any age in their preference for O-1 or O-2 indicating the similar objects are 

indeed similar and the mice will explore them no matter their placement in the arena (Figure 2.3B). 

When a familiar object was replaced with a novel object, there was no difference in the preference 

for the novel object between control and OBiden mice at 2 or 6 months of age and an example 

trace is shown in the supplement (Supp. Figure 2.2). However, at 12 months of age there was a 

significant decrease in the OBiden mice preference for the novel object, indicating a likely inability  
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Figure 2.3 – Longitudinal Novel Object Recognition Testing 

 

Figure 2.3 – A) Schematic of Novel Object training (top) and probe (bottom) trials showing 

the switch from two identical objects (O-1 and O-2) to a familiar and novel object (N.O. and O-

2). B) Training trial identical object preference showed no differences at any age point between 

Control and OBiden animals. C) On probe day testing there was a significant impairment in the 

OBiden ability to identify the novel object only at 12 months of age (Control and OBiden n by 

age – 2 months = 6, 10; 6 months = 7, 8; 12 months = 8, 9). 
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Figure 2.4 – Longitudinal Recognition Memory Win-Shift T-Maze Testing 

 

Figure 2.4 – A) Schematic diagram of the T-Maze chamber with the start arm for the 

mouse and two goal arms with guillotine doors, with difference floor textures and wall patterns. 

B) Correct alterations across ages of control and OBiden mice showing no differences at 2 or 6 

months of age but a significant decrease in performance in OBiden mice at 12 months of age 

compared to controls (Control and OBiden n at 2, 6 and 12 months; 2 months = 3, 3; 6 months 

= 5, 10; 12 months = 9, 9) 
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Table 2.2 – Longitudinal Recognition Memory Testing Statistics 
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to recognize the novel object as novel and a likely deficit in the recognition memory processing 

pathway (Figure 2.3C). 

To confirm the memory deficits seen in novel object testing, an additional test was run to 

examine the ability of the mice in a foraging-like situation, where they will respond to food cues 

and enter the most-novel arms of a T-maze on subsequent trials (Figure 2.4A)(Deacon and 

Rawlins, 2006). After training the mice to alternate arm entrances from one arm to the arm they 

previously did not enter, and testing their performance at multiple ages, there was a significant 

deficit in performance of the OBiden mice only at 12 months of age, similar to the novel object 

testing deficit (Figure 2.4B). This indicates a loss of function of the circuits involved with tracking 

the location of the alternating food rewarding and correctly following the pattern. Although more 

complex than the novel object testing, both tests rely heavily on an entorhinal cortex to dorsal 

hippocampus connection that appears to be compromised in the OBiden mice. 

Stability of Spatial Memory Processing in OBiden Mice 

Memory pathways can be subdivided into discreet processing pathways, the 

recognition/novel object pathway discussed above, and pathways for the identification and 

location of the animal’s location in its environment. This second memory pathway is spatial 

memory processing, a more visual based memory used to orient the mice within a maze or 

environment and allowing them to develop strategies to escape the maze or complete set tasks 

(Harrison et al., 2006; O’Leary et al., 2011). It was important to analyze the spatial memory of the 

OBiden mice to determine if that portion of memory was effected by our primary metabolic stress. 

And if it was effected, was the change due to visual pathway pathology or pathology to the 

information processing pathways with the CNS. First, a task called the Barnes Maze was utilized 

requiring the mice to learn the position of an escape box on a symmetrical elevated platform with 

room cues for guidance. This test is similar to the Morris Water Maze, but has the advantage of 

reducing stress and noxious stimuli on the mice by removing the swimming element. There was 

no difference in latency or errors during training to learn the Barnes maze paradigm, with a fixed  
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Figure 2.5 - Barnes Maze Analysis of the OBiden Mouse 

 

Figure 2.5 – A) Diagram of the initial setup of the Barnes maze including mouse 

placement and location of the goal hole and goal box. B) Latency to complete the maze across 

trials days. The probe day variants are indicated by bolded numbers, arrows and dotted lines 

(days 6, 8 and 11). C) The errors made (wrong hole examined prior to finding goal hole) per trial 

day across Barnes maze testing (n = 8 per group) 
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Table 2.3 - Barnes Maze 2-way ANOVA Main Effects 
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Table 2.4 – Barnes Maze Post-hoc t-tests by Day 
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goal hole, nor were there any differences detected on the various probe days (Figure 

2.5B,C)(Table 2.3, 2.4). Probing on day 6 was to account for intra-maze cues the mice may have 

been utilizing as the maze was shifted 90o but the mice were expected to move quickly to the hole 

location they had previously associated with ending the maze. Day 8 was a probe to determine if 

the mice were use extra-maze cues to navigate and if they are, their latency and errors should 

increase as we blocked their access to peripheral visually cues. This is indeed what we see, that 

both controls and OBiden are using extra-maze cues so their latency and errors increase on day 

8 (Figure 2.5B,C). Finally, the mice were re-trained on day 10 to a new goal location 180o away 

from the original goal hole, this was to test their ability to continue to use maze cues to navigate, 

but now the navigation is to a new location. When tested on day 11, we again find no difference 

between control and OBiden mice indicating both possess the ability to successfully spatially 

orient themselves to complete the Barnes maze paradigm (Figure 2.3B,C)(Table 2.4). 

In the main effects for the Barnes maze analysis (Table 2.4) there is a significant difference 

in both latency and errors when looking at the testing day. This difference does not manifest in 

the post-hoc analysis because all t-test comparisons are within a day between genotypes. It is 

likely that the main effect difference is due to the spike in latency and errors on day 8 and the 

differences from the first training day to the fifth training day. Because the main comparisons 

between genotypes gave no differences, the analysis to determine exactly which comparisons 

are giving the main effects differences was not run as it was not pertinent given the lack of 

differences during a specific day across testing. 

A second test for spatial memory was used on the OBiden mice, one that closely 

resembled the novel object testing, where a deficit was identified, but relied on a different 

processing pathway for the mice to successfully complete the task. However, due to an initial test 

design that was substandard upon subsequent analysis, the spatial memory task was restarted 

with new cohorts of mice and led to a reduced n across ages. With testing at each age typically 

utilizing discreet groups, the 12 month age point contains sufficient n’s to draw meaningful  
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Figure 2.6 – Spatial Memory moved object testing in the OBiden Mouse 

 

Figure 2.6 – A) Diagram of the training trial (top) and probe trial (bottom) of the spatial 

memory testing. Two identical objects are used for both trials and one object will move relative 

to the walls and the stationary object and the mice should identify the moved object over the 

stationary one. B) Training trial object preference showed no differences at 2 or 12 months, 

but at 6 months there was a discrepancy between control and OBiden mice in object 

preference (control n=2, OBiden n=3). C) No differences were observed at any age during the 

probe trial with little preference for the moved object over the stationary object (Preference 

scores > 50) (Control and OBiden n per age – 2 months = 6, 4; 6 months = 2, 3; 12 months = 

9, 5). 
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Table 2.5 – Spatial Memory t-test Summary 
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conclusions, especially for comparison with novel object and T-maze tests. As spatial memory 

relies on external visual cues, the arena for testing had a clear Plexiglas insert to allow the wall 

patterns to be changed by adding benchcoat paper cut into different patterns between the insert 

and the black outer wall. This way the mice were trained in an arena with different walls and no 

objects first, followed by two identical objects in opposite corners, and then during the probe trial 

one object was moved to an adjacent corner of the maze and the mouse should spend more time 

with the moved object than the stationary object (Figure 2.6A). During spatial memory training, 

we saw the appropriate division of time between both objects at 2 and 12 months, however at 6 

months of age there was a significant difference in the time spent at objects with the control and 

OBiden mice preferring different starting objects (Figure 2.6B)(Table 2.5). This could be due to 

low n’s at the age point or room conditions we could not account for (i.e. extraneous smells from 

hallway, slight temperature or olfactory differences within the box) but did not manifest during the 

probe trial (Figure 2.6C). As with Barnes maze, there were no differences between control and 

OBiden mice in their preference for the moved object within their environment. This could point to 

one of two explanations, either there are unaccounted variables in our spatial memory testing, or 

that the mice do not suffer significant deficits to spatial memory processing out to 12 months of 

age in out paradigm. 

Exogenous Stress induced memory and retrieval at 12 months of age 

In addition to passive memory tasks such as novel object, T-maze and Barnes maze, there 

are more active tasks involving conditioning and stimulation of the mice. These tests can use 

negative or positive reinforcement, with the negative reinforcement often eliciting stronger 

responses and using a discreet, well defined pathway (Henderson, 1968; Seo et al., 2016). The 

primary components of this pathway, most generalized sensory and information processing, are 

the basolateral amygdala and the prefrontal cortex. These regions are discreet from those 

analyzed previously and allowed us to further analyze the OBiden mice for central processing 
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defects as well as sensory defects as their respond to noxious stimuli may be different if peripheral 

signal processing is disrupted. 

The OBiden mice were run through a cue based fear conditioning where a sound and light 

cue combination is used preceding a mild foot shock delivered through the wire mesh flooring. 

The mice learn to associated the white noise at light as preceding the shock over 2 days of trials 

and then a number of extinction days are run to determine how quickly the mice relearn that the 

light/sound cue pair is no longer associated with a negative electric shock (Figure 2.7A). During 

the first 120sec the mice are in the chamber on the extinction days we measure their freezing as 

a percentage of the total time during this acclimation phase to get the contextual fear the animals 

have towards the chamber itself. In optimal settings, this contextual fear will be low since the mice 

should have little fear directed toward the chamber because they have been trained to associate 

the cue pair with the noxious stimulus, not the box itself. Both the OBiden and control mice show 

low percentage of freezing when initially placed in the box for extinction trials, as expected for our 

paradigm (Figure 2.7B). During the cue presentation without stimulus during extinction days, both 

OBiden and control animals started with high level of freezing in the times succeeding the cue 

presentation, but the freezing reduced over the days, as expected (Figure 2.7C). There was no 

difference in the rate of extinction between genotypes, no matter how the freezing trials were 

segregated or broken down, indicating that the OBiden and control mice re-learn that the cues 

are no longer paired to a noxious stimulus at the same rate. This also indicates that there is no 

major pathology in amygdala or frontal cortex at 12 months of age, although because fear 

conditioning uses a noxious stimulus to elicit results, it may take increased levels of degeneration 

to produce a measureable change compared to more sensitive novel object paradigm. 
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Figure 2.7 – Fear Conditioning in the OBiden Mouse 

 

Figure 2.7 – A) Timeline of Fear conditioning showing the 10 trials over 2 days of 

acquisition light/sound with shock pairings and the 12 days of light/shock only during 

extinction. B) Freezing when initially placed in the box (contextual) is measured across all 

extinction days showing no differences between control and OBiden. C) Freezing due to 

cue presentation decreases over time with no differences between control and OBiden 

animals (n = 4 per group) 
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Table 2.6 – Fear Conditioning Extinction Days 2-way ANOVA Main Effects 
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Table 2.7 – Fear Conditioning Extinction Day t-tests 
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Discussion 

Behavioral testing in animal models of disease has been utilized for years but continues 

to gain more importance as behaviors can be subdivide anatomically and experimentally to give 

more reliable and detailed results. This allows for in vivo analysis of animal models to identify 

areas of pathology, but also provides a framework for future drug or treatment testing to hone 

treatment strategies before they reach patients. This is especially true for MS, where years of 

research has focused on the physical disability associated with overt lesion development, but 

there has only recently been increased investigation into the detrimental gray matter lesions and 

neurodegeneration occurring in patients. Additionally, the most common MS model, EAE, is only 

useful for behavioral testing during a small window before significant pathological development 

and as the EAE phenotype worsens, mice are incapable of performing most behavioral 

tests(Acharjee et al., 2013). 

The OBiden model develops, at worst, a transient physical phenotype that manifests as a 

one-week dip in performance on the inverted screen test for strength but remains physically 

capable through the end of our testing at 12 months of age. This resembles aspects of MS, in that 

many patients will go months or years without a physical attack, but that does not preclude the 

continuation of subtler neurodegeneration that will only manifest later and by then treatments and 

therapies can be largely ineffective (Llufriu et al., 2014). Similar to patients, the OBiden mice 

develop cognitive disturbances beginning at 6 months of age in the manifestation of a depression-

like endophenotype that persists out through 12 months of age. Although this matches with 

increased rates of depression seen in MS patients, depression in patients and the endophenotype 

in mice is often the result of widespread, low levels of pathology throughout the CNS and cannot 

always be attributed to specific nuclei. However, when we investigated further using more 

sophisticated tests to evaluate differential memory pathways, we found that the OBiden mice 

develop a recognition memory deficit at 12 months of age. The inability to recognize novel objects 

and the lack of ability to identify more novel arms of the T-maze and correctly alternate show that 
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the OBiden mice are likely developing pathology in the dorsal hippocampus, entorhinal cortices 

or associated white matter pathways and these pathologies are affecting their cognitively ability. 

Although the OBiden mice develop one memory deficit they do not suffer from a 

generalized failing of all subtypes of memory. This is important because the normal functioning of 

spatial memory and cue-based fear memory narrowed the list of possible CNS locations that are 

most strongly effected in our model. It also could point to regional susceptibility within the CNS of 

the mice, that not only allows us to focus on specific areas for pathology, but also to correlate with 

MS and determine if patients also display regional susceptibility. This feature of the OBiden mice 

not only opens up additional possibilities into the pathophysiology of MS, but also allows the mice 

to be monitored for extended periods of time in vivo to better characterize deficits and the temporal 

and physical distribution. Finally, there is the possibility of increasing the level of primary metabolic 

stress in the mice and evaluating the mice to see a decreased time to deficit onset, increased 

pathology across more pathways or the development of new deficits outside of those already 

identified. 

The behavioral changes in the OBiden model are of particular use when studying the 

neurodegenerative aspects of MS. Compared to the traditional adaptive immune mediate model, 

EAE, OBiden undergoes much less physical pathology allowing for reliable cognitive testing. 

Additionally, the current OBiden pathology can be identified as part of an established connection 

system between the entorhinal cortex and hippocampus (Igarashi et al., 2014). This allows us to 

test particular cell populations in gray and white matter areas and attempt to follow and identify 

degenerative footprints and it directs some future experiments by pointing towards connectome 

electrical disturbances as another symptom of the OBiden mouse. Possibly of paramount 

importance, though, is the fact that from primary metabolic stress in oligodendrocytes there can 

be a myriad of behavioral symptoms, indicating the importance of synthesizing and maintaining 

proper myelin throughout life to maintain normal cognitive functions and avoid degenerative 

changes.  
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CHAPTER 3 – MAGNETIC RESONANCE IMAGING IN THE OBIDEN MOUSE 

Introduction 

For any disease it is critical to have accurate information about its extend and progression 

and in the case of treatment, how efficacious and the extent of treatment effectiveness. In 

neurodegenerative diseases this information can sometimes be difficult to obtain because the 

CNS is not amenable to biopsy and unless lesions or degeneration are substantial enough, the 

built in redundancies in the CNS may not cause overt manifestation of symptoms (Adams and 

Kubik, 1952; Bjartmar and Trapp, 2001, 2003; Fischer et al., 2013; Trapp et al., 1999). Historically, 

the diagnosis and interpretation of MS phenotype relied on physical symptoms in patients. 

However, because sub-clinical lesions could not be detected, and until the disease reached the 

more progressive phase it would be difficult to track the progress and disability of patients 

(Lorscheider et al., 2016; Polman et al., 2011; Schumacher et al., 1965). 

The analysis of MS, as well as other neurodegenerative diseases, has greatly improved 

over the last 30 years with the advent and improvement of magnetic resonance (MR) imaging 

techniques. MR is based on the fact that different ions within molecules contain electrons spinning 

at various frequencies and that these electrons are susceptible to external magnetic fields. With 

the addition of a radio frequency coil sensitive to the directional field induced by the ionic spins, 

the internal structure of physical bodies could be analyzed for structure based on water content 

in the most common form of MR imaging (Scherzinger and Hendee, 1985). The ability to analyze 

water content in tissues is based on the susceptibility of the spin fields around hydrogen (H1) 

atoms in water molecules and because all tissues have various concentrations and distribution of 

water molecules, H1 MR as the differentiation of tissues. 

These structural scans, given sufficient field strength power of the magnet of the MR 

scanner, are invaluable at detecting lesions that might not otherwise manifest as a physical 

disability. In fact, the success of structural MR scans at identifying the dissemination of white 
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matter lesions in the CNS of MS patients caused a change in the diagnostic criteria of MS from 

more clinical judgement to include MR lesions as well as clinical evaluation (Polman et al., 2011). 

This introduced new lines of research on correlating the MR signatures to pathological features 

in the CNS. For example, hyper-intensities in T2 weighted spin-echo scans were often associated 

with active, inactive or remyelinating lesions in the white matter as they are associated with an 

increase in water density that shows up as increasing white intensity on T2 scans. Conversely, 

T1 scans suppress the signal of water and give the same lesions, and additional gray matter 

lesions, as hypo-intensities sometimes referred to as ‘black holes’ (Kilsdonk et al., 2016). As the 

power of scanners and the sensitivity of the receivers increased, greater and greater detail was 

resolved about these pathological feature in vivo and additionally the components were 

miniaturized sufficiently to allow for experimentation on small animal models. 

The additional power and sensitivity as the MR technology progressed also allowed for 

the development of novel sequences to investigate functional as well as structural aspects of the 

CNS. These included fMRI that analyzed oxygenated versus de-oxygenated blood to local areas 

as a marker of neuronal activity; MRS (spectroscopy) to look at metabolite concentrations across 

the CNS for disruptions due to disease states, and DTI (diffusion tensor imaging) at method of 

looking at the directional flow of water that highlights dense, parallel fiber tracks in the CNS 

(Benveniste et al., 2000; Filippi, 2001). These techniques have opened powerful windows into the 

brain in living patients and model organisms. As MR techniques are part of the current diagnostic 

criteria for MS, they were applied to the OBiden mouse in an attempt to identify in vivo pathology 

detectable at a gross level from our primary metabolic stress. 

Materials and Methods 

Magnetic Resonance Imaging (MRI) – All MR images were acquired on a Bruker 7T 

Clinscan magnet connected to Siemens Syngo MR B15 software platform using a dual coil mouse 

brain surface coil from Bruker. For structural T2 scans the following parameters were used for 



www.manaraa.com

 

 

71 

spin echo (SE) sequences: TR = 1200ms, TE = 61ms, TA = 41:58, FoV = 16mm X 16mm, Echo 

Train (Turbo Factor) = 22, 180o flip angle, 125µm X 125µm in plane resolution, 3D acquisition, 

averages = 2. Scans were triggered by exhalation from the animals, who were maintained at 70-

90 breaths/min under a 1.5-3.0% isoflurane-medical air mixture delivered at 1 liter/min. Animal 

temperature was maintained through the plastic animal holder which was warmed to 30-34C 

through circulating water. After acquisition, DICOM files were output and transferred to OsiriX 

image analysis software for volumetric analysis and image reconstruction. For ventricular volumes, 

the lateral and third ventricles were traced by hand by a trained rater, and the forebrain (rostral to 

inferior colliculus) and hindbrain (caudal to inferior colliculus) volumes were also obtained through 

manual segmentation and then forebrain and hindbrain volumes were combined to obtain the total 

brain volume. All ventricle measurements were normalized intra-mouse to total brain volume. The 

aqueduct connecting the lateral and third ventricles was excluded from analysis, as was the 

aqueduct connecting the lateral and fourth ventricles (non analyzed).  

 Diffusion Tensor Imaging – DTI image acquisition was performed with the same 

isoflurane, heating and gating setup as structural MRI. Image parameters for DTI acquisition were: 

TR = 2500ms, TE = 30ms, 6 diffusion directions, 2D, average=1, 90o flip angle, FoV=46mm X 

68mm, 5 simultaneous slices at 500µm thick, 1.2mm spacing. Two sets of scans were obtained; 

the second set was offset 500µm caudally compared to the first set of scans to obtain images 

across more of the forebrain region. Raw images were output to OsiriX and reconstructed using 

the DTI Map plugin to obtain 2D intensity images of: FA values, Eigen vectors 1 (l1), 2 (l2) and 

3 (l3), and color coded DTI directionality map. For analysis, we obtained each Eigen value for at 

least 8 pixels across these regions: genu, mid and splenium of corpus collosum (2 slices each), 

left and right external capsule (3 slices each), left and right internal capsule (2 slices each). FA 

was calculated from Eigen vectors as described: 

𝐹𝐴 = 	 1/2 ∗ (:;<:=)?@(:=<:A)?@(:A<:;)?

:;?@:=?@:A?
 . 
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 The FAs across 8-10 pixels were averaged per region to get an FA average per slice, and 

these were averaged across slices to get an FA value for a given white matter region. Color coded 

images were generated from the DTI Map plugin in OsiriX and trimmed manually using OsiriX 

viewer and trimming tools.  

Results 

Longitudinal Structural MRI in OBiden Mice 

To analyze the OBiden mice, mice were run at 2, 6 and 12 months through a battery of 

MR sequences. The first set, performed longitudinally when possible, was a series of structural 

T2 and T1 weighted spin-echo scans to probe the structure of the OBiden brain. Specifically, the 

scans were analyzed for lesion development in white or gray matter and the volume of the 

ventricular system was obtained from T2 scans. In T2 scans, the greater the concentration of 

water, the brighter the signal will appear because T2 scans use a relatively long echo time. This 

echo time (TE) directs when the receiver will analyze for spins from the tissue and the more 

residual magnetic excitement remaining in the tissue at the time of analysis, the brighter the signal. 

Our scans were based on hydrogen excitation, and if the hydrogen atoms are in densely packed 

molecular locations surrounded by non-excitable atoms, such as within plasma membranes or 

intracellular fluid filled with protein structures and lipids, the hydrogen atoms give off their spin 

energy quickly. This causes the signal to fade faster than in location where there are more 

hydrogen atoms and less non-excitable atoms, such as the CSF filled lateral ventricles 

(Benveniste et al., 2000; Scherzinger and Hendee, 1985). Example slices of a T2* weighted scan 

is shown in Figure 3.1A and B in the insets, where the ventricles appear as bright white and the 

surrounding tissue is varying shades of gray. The ventricular system is useful as a proxy for overall 

degeneration in the CNS. As the brain degenerates, the ventricles will expand from within the 

brain to keep the shape of the CNS roughly stable over time, rather than allowing the brain to 

collapse inward during neurodegeneration. Therefore, we segmented out the largest and most  
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Figure 3.1 – Segmentation of the OBiden Mouse Ventricular System 

 

Figure 3.1 – A) Segmentation of a control mouse lateral ventricles (LV) and third 

ventricle (3V) at 12 months of age. Insets 1 and 2 correspond to the white lines through the 

ventricles representing the location of the slices from T2* scans see in the insets. B) 

Segmentation of the ventricle system in a 12 month OBiden animal. 
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well defined pieces of the ventricular system in mice, the lateral ventricles (LV) and third ventricle 

(3V) to obtain the volume of the ventricular system at 2, 6 and 12 months of age (Figure 3.1A,B). 

There is no reliable automated segmentation tool for mouse brain MRI as of yet, so all the 

ventricles were segmented manually to assure accuracy and reliability as multiple raters would 

obtain volumes with ±5% of one another. In addition to the ventricles, the total volume of the brain 

was obtained by manually segmenting around the outer circumference of the brain from the 

olfactory bulbs to the forman magnum. This way the ventricle volumes could be normalized to 

total brain volume (TBV) to account for inter-mouse variability and standardize the measurements. 

The volumes were also normalized to the 2 month, pre-gavage value for each group resulting in 

a value of 1 at 2 months, and then changing values as the mice aged. There was no difference in 

the TBV values at any age point, after normalizing to the 2 month values, indicating that the overall 

volume of the mouse brains did not change as a result of age or our induction of primary metabolic 

stress (Figure 3.2A). When the lateral ventricles were analyzed, there was an increase in volume 

as the mice aged in both control and OBiden animals and no difference between the two 

genotypes (Figure 3.2B). This indicates that any expansion we are seeing is likely a result of 

normal aging or development processes in the mice, since we would anticipate an accelerated 

increase in volume if there was additional degeneration in the OBiden mice. Finally, the third 

ventricle was analyzed, and as was the case with the lateral ventricles, we did not see a significant 

difference between the control and OBiden mice at any age point indicating no accelerated 

degeneration (Figure 3.2C). Segmentation of specific gray matter structures was attempted, such 

as the hippocampus and thalamus, however our scans were of insufficient detail to allow for 

accurate volumetric analysis and obtaining detailed scans was temporal prohibitive as each scan 

for a mouse would run for 3+ hours. Due to the lower resolution, it did not appear that any focal 

lesions could be detected, even though those lesions did develop as will be discussed in later 

chapters. Overall, there was no detectable difference in generalized degeneration using the 

volume of the ventricular system as a surrogate marker for degeneration in vivo. 
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Figure 3.2 – Longitudinal Ventricle Volumes in the OBiden Mouse 

 

Figure 3.2 – A) Normalized total brain volumes (TBV) from control and OBiden mice at 2, 

6 and 12 months of age with no differences between genotypes. B) Lateral ventricle (LV) 

normalized volume across ages with no differences between genotypes. C) Normalized third 

ventricle volumes across ages showing no differences between genotypes (Control and OBiden n 

per age – 2 months = 7, 7; 6 months = 7, 7; 12 months = 7, 5). 
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Table 3.1 – Longitudinal Ventricle Volumes 2-way ANOVA Main Effects 
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Table 3.2 – Longitudinal Ventricle Volume Post-hoc t-tests 
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DTI Characterization of OBiden Mice at 12 months 

Although there was no observable degeneration through T2 structural MRI analysis, that 

technique has its limitations and only gives a general picture of tissue integrity throughout the 

CNS. As the OBiden model primarily affects white matter, there are other MR techniques that 

focus more on the structure and stability of dense fiber tracts, many myelinated, in the CNS. The 

main technique to date for white matter analysis is diffusion tensor imaging (DTI). DTI is also 

based on utilizing and controlling the spin of hydrogen atoms, but instead of looking mainly at the 

local environment through spin-loss of the atoms, it analyzes for movement of the atoms in 

different directions. 

DTI scans work by magnetizing hydrogen atoms within the magnetic field and tracking the 

movement of the hydrogen atoms, mostly those in water molecules, as they diffuse through their 

local environment (Aung et al., 2013). By adjusting the timing of the scan, it can suppress the 

signal obtain from freely diffusing molecules in the ventricles or blood vessels and focus on more 

confined diffusion, especially in intracellular compartments. This is particularly beneficial when 

looking at axon bundles and myelinated tracts as there are a large number of directional axons 

moving in parallel that will give similar signals upon DTI stimulation. By analyzing the direction of 

movement in three main directions (eigen vectors) a map can be obtained of the diffusivity of 

water, and importantly the more tightly organized and intact tracts are the more directional the 

signal. As degeneration occurs and tracts lose their integrity or lose axons to degeneration, the 

signal will be altered and picked up upon scanning. This directionality is referred to as the 

fractional anisotropy (FA) of the tissue and the ranges from 0 -1, with 1 representing movement 

restricted to only one direction and 0 means freely diffusing water in all directions. The FA values 

are then converted to a 3D matrix for color coding to represent direction and intensity of color to 

show the value of the FA (Figure 3.3A). 

 Upon quantification of the FA intensity at 12 months of age, there was no difference 

between control and OBiden animals across the corpus collosum (CC) (Figure 3.3B). Multiple  
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Figure 3.3 – DTI of Neocortical White Matter Tracts in the OBiden Mouse 

 

Figure 3.3 – A) Representative color-coded slices from DTI of 12 month control (Top) 

and OBiden (Bottom) mice. Position and thickness of slice is indicated on the sagittal brain atlas 

picture at the top right. Arrows indicate the white matter tracts used for analysis; corpus collosum 

(CC), external capsule (EC) and internal capsule (IC). B) FA values from various regions of the 

CC show no difference in between control and OBiden animals (n = 7,9). C) FA values from 

bilateral white matter tracts of the EC and IC show no differences at 12 months between control 

and OBiden mice (n = 7,7). 
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Table 3.3 – Corpus Collosum DTI Statistics 
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Table 3.4 – External and Internal Capsule DTI Statistics 
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regions of the CC were used because there is heterogeneity across the CC in terms of fiber 

diameter and therefore extend of myelination. However, even after 10 months of metabolic stress 

induction there was no change to the overall FA’s in any region. Further, additional white matter 

tracts were analyzed to determine if there were regional differences between white matter tracts. 

The external capsule (EC) and internal capsule (IC) were analyzed because they were easily 

identifiable on the DTI scans, and because together with the CC, they carry many of the neuronal 

projections running between hemispheres and nuclei in the CNS. Even with the extended analysis, 

there was no difference between genotypes when analyzing identical tracts in the CNS. However, 

there was a difference in the FA between the EC and IC, but that is due to the structure and size 

of the tracts with the IC being larger and more densely packed than the EC and therefore giving 

a larger FA with our scan technique (Figure 3.3C). 

 Although there were no observable changes with DTI, that does not necessarily indicate 

a lack of pathology. For one, the MR system used for this study did not have the power to acquire 

more complex DTI data that may have resolved micro-lesions that developed but were 

unobservable at the current resolution. Also, there is evidence that even in MS patients, 

degeneration and lesions can be difficult to detect with DTI and that either reliable longitudinal 

studies or higher magnetic field strengths are critical for obtaining informative data (Aung et al., 

2013; Filippi, 2001). 

Atlas Generation from in vivo MRI 

Another use for the MRI that originated as an attempted quantitative study but ended as 

a more qualitative and visually appealing study, was the segmentation of nuclei within the CNS.  

Originally, the idea was to analyze the volume of various structures throughout the brain, however 

due to limited resolution and poorly defined borders, especially in cortical regions, it was not 

feasible to complete the study. However, the segmentation proved valuable in other avenues, 

especially as a visualization tool for mapping back regions of confirmed pathology and 

understanding the anatomical relationship to each other in 3D space. The MRI analysis software  
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Figure 3.4 – Segmentation of MRI Derived from the OBiden Mouse Brain 

 

Figure 3.4 – A) Whole segmented mouse brain after skull stripping. The rostral, caudal 

and dorsal surfaces of the brain are indicated and the ventral surface is below the brain, out of 

the picture image. B) Various brain ROIs are highlighted within the mouse brain. Green nuclei 

are those of less interest to the current studies and from rostral to caudal position are: rostral 

piriform cortex, reticular thalamus, cingulate cortex, caudal piriform cortex and flocculus. Colored 

brain regions of future to the study are: blue – dorsal hippocampus, orange – ventral 

hippocampus, red – rostral entorhinal/perirhinal cortex, yellow – entorhinal cortex. 
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used allowed an individual mouse brain to be stripped of the skull to isolate the neocortex and 

create a basic brain template (Figure 3.4A). On the original scans, regions of interest (ROIs) can 

then be drawn over any region or multiple regions to highlight approximate areas of cortex, 

thalamus or any brain region to be displayed and visualized in three dimensions (Figure 3.4B). 

This allows the distance between ROIs to be visualized, their anatomical relationship to each 

other and other intermediate ROIs that could be of interest in future studies. 

The atlas has the additional benefit of use in future studies using in vivo MR spectroscopy 

(MRS) studies. The MRS studies involve analyzing the CNS for the concentration of various 

metabolites within the CNS and also requires placing specific ROIs over the brain to confine the 

analysis to specific brain nuclei. As certain regions of the brain will express specific metabolites, 

for example ventral tegmental area (VTA) produces dopamine in high concentration and 

amygdala produces GABA at levels above other nuclei, it is important to isolate specific regions 

to reduce contamination from surrounding structures. 

Discussion 

Unlike diseases of many peripheral organs or systems such as liver, kidney, or gastro 

intestinal as examples, the brain and neurodegenerative diseases are not amenable to biopsy, 

surgical evaluation or peripheral sampling. Because, to an extent, the CNS is isolated form the 

periphery of the body it can be difficult to analyze neurodegenerative disease in vivo, for 

diagnostic or treatment tracking purposes. 

With the translation of imaging techniques from the analytical realm to the clinical and 

research realm, new avenues of research and comparison between models of disease and 

patients have opened up. These techniques, such as MR imaging, were first established for their 

usefulness in the clinic. However, as technology allowed for miniaturization and increased 

sensitivity, it became evident that the same techniques could be applied to research models to 
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track the progress of disease in vivo, and to correlate the findings with observations from patient 

populations. 

In the OBiden model, MR techniques were utilized to analyze the mice as they aged to 

develop the techniques for the lab, and to attempt to identify comparable pathologies to MS 

patients. Also, these techniques were very useful in obtaining data from within the CNS without 

sacrificing the mice and allowing for continued testing with behavior tests and general monitoring 

of the mice as they aged. Although there were not significant differences between the control and 

OBiden mice in terms of ventricular volume or DTI analysis of fiber tracts, this does not rule out 

the possibility of harnessing new techniques as they become available, or fine tuning they 

techniques available to optimize our data. Even studies of MS patients are finding that much of 

the pathology that can be identified through post-mortem histological and immunocytochemical 

studies is still lost to MR techniques (Kilsdonk et al., 2016). Continuing our studies on the OBiden 

model and relating it to our observed pathology, as well as patient pathology could identify novel 

pathologies or novel methodologies for evaluating pathology, which would benefit patients as well 

as the research into MS models.  

Currently, one of the benefits obtained from some of our imaging studies is the 

development of our own 3D atlas of the brain and areas of pathology. For many neuroscientists, 

they are familiar with human and often animal brain structures, so the model becomes a tool to 

concisely display the data we accumulate to better convey our results. However, for non-scientists 

or those outside the neuroscience field, it represents a display technique that can more easily 

convey our message across fields and outside the scientific community as a way of increasing 

the knowledge and collaboration within and outside the research community. 
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CHAPTER 4 – HISTOLOGICAL AND IMMUNOCYTOCHEMICAL ANALYSIS OF THE 
OBIDEN MOUSE AND MS TISSUE 

Introduction 

The characterization and investigation into the pathology of MS was first accomplished 

through the use of histological methods that were later supplemented with molecular staining and 

blotting techniques. However, because of the established nature, detail and previous 

characterization of MS pathophysiology through histology it remains and important technique in 

evaluating MS post mortem samples and any developed models of the disease. 

Histopathological methods are still used in the diagnosis and post-mortem identification of 

diseases in patients because of their reliability, relative ease to perform and relative sensitivity to 

changes in tissue composition. These techniques are often basic or acidic plant derivatives that 

bind to nuclei acids or proteins depending on their distribution in the tissue. For neuropathology, 

the most famous stains are the silver impregnation techniques adapted from early photography 

that stained different components of the neural architecture depending on the modification, 

preparation and length of the stain (Garven and Gairns, 1952). These techniques were not only 

critical for Golgi, Cajal and Brodmann to describe and setup fundamental understandings of the 

arrangement and architecture of the nervous system, they are still valuable in giving high contrast 

and detailed images for the analysis of cellular and sub-cellular pathologies within the CNS (Conel, 

1953; Funkhouser, 1915). 

The OBiden mouse had not been evaluated prior to this study and therefore it was not 

only necessary but expedient to use a number of histopathological techniques to describe 

pathology in the mice and compare the model to MS tissue. This included the use of silver 

techniques and specifically a modification called the modified Bielschowsky stain that is used to 

highlight neurofibrillary tangles and axons throughout the CNS (Yamamoto and Hirano, 1986). By 

staining for axons, we could identify areas of axonal loss, axonal spheroids and transections or 
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other pathologies in the OBiden and MS tissue, regardless of the preservation or preparation of 

the tissue given the robustness of the technique. 

In addition to the silver staining of neurons, staining myelin was important, especially 

considering the effect the OBiden mouse should be having on the myelin of the CNS. To detect 

myelin, a stain based on the interaction of a dye with the phospholipid dense myelin sheaths was 

utilized called Luxol Fast Blue (LFB) (Snodgress et al., 1961). LFB is specific for CNS myelin, it 

will not work as efficiently on PNS myelin, and has the additional benefit of losing specificity for 

degenerating myelin. This means that it can be used to differentiate between intact CNS myelin 

and myelin that has undergone substantial degeneration but may still stain with myelin proteins. 

LFB then is particularly useful as a stain for identifying primary myelin pathology, whether it is in 

the OBiden mouse or in MS patients were active, inactive and chronic lesions can all have 

differential staining patterns when analyzed histopathologically. 

While the histopathological stains are important historically and for comparing the OBiden 

mouse to MS tissue, the development and refinement of antibody staining techniques has allowed 

for additional analysis of tissue and the cellular and molecular composition. By staining for surface 

or intracellular markers we can determine, semi-quantitatively, the abundance of various cell 

types as well as their general health and state. For example, the endogenous immune cells of the 

CNS, microglia, are nominally at rest but upon sensing debris or changes to their environment 

can alter their expression profiles. They upregulate lysosomes for degeneration and change their 

phenotype as they phagocytose surrounding tissue (Bennett et al., 2016; Kuhlmann et al., 2017). 

Changes can also occur in the oligodendrocyte, astrocyte and neuronal populations that may be 

detectable with various markers. 

Together, the idea is to compile a broader view of the scope, location, extent and severity 

of degenerative phenotypes in the OBiden mouse. Because, unlike models such as EAE, it has 

not been characterized to date and because, so far, overt physical phenotypes have not 

developed that would allow us to pinpoint pathology it is necessary to undergo a survey to 
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understand the model better. To this end, histopathological and immunocytochemical techniques 

were brought to bear on first 6 month and then 12 month OBiden mice as the analysis was 

extended. Although gross level pathologies were not present, many instances of regional, focal 

and discrete pathology developed throughout the CNS of the mice. More importantly, many of 

these pathologies showed similarities to known MS pathologies given a molecular credence to 

the OBiden model as a potential new tool for investigating and understanding MS disease course. 

Materials and Methods 

Luxol Fast Blue 

The stock solutions can be made in advance and stored, covered from light, until use. The 

Luxol Fast Blue (LFB) solution is made by mixing 995ml of 95% ethanol is 5ml of 10% acetic acid 

(final concentration is .01% acetic acid), then adding 1g Solvent Blue 38 (Sigma S-3382) mixing, 

and then filtering with 0.45µm filter. 0.1% (w/v) Lithium carbonate (LiCO3 -  Arcos 554-13-2) is 

made in filtered water, and 1% Eosin-Y stock is made by dissolving 1g Eosin-Y (Sigma E511-25) 

in 100ml of 95% ethanol and mixing then filtering. For staining, 10µm frozen cryostat sections are 

thawed in 1xPBS for 10min, washed in filtered water, and then taken up through the ethanol series 

(50%→70%→80%→90%→95%→95%) for 2min at each step and then into xylene washed 2 

times for 2min each. Slides are washed twice for 2min in 95% ethanol then placed in LFB solution 

and placed in a heating oven at 70C for 6-8hours. The slides are then removed and allowed to 

cool to room temperature over 30min, then excess stain is removed by washing in 95% ethanol 

for 1min. Next, slides are washed twice for 5min each in distilled water to prepare for differentiation. 

The slides are placed in 0.1% LiCO3 for 20-30sec, moved to an 80% ethanol wash for 15-20sec 

with constant agitation and then dipped into distilled water followed by a distilled water wash for 

5min. Once all slides are finished differentiating, they are placed in Hematoxylin solution (Gill’s 

No.1, Sigma GHS-132) for 5min, followed by washed with tap water until the water from the slides 

runs clear. While the slides are in tap water, 1% Eosin-Y is made into its working solution by 
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diluting it to 0.25% with 100% ethanol and then adding 500µl acetic acid for every 100ml of Eosin-

Y solution (solution should go from opaque green/orange to bright and clear orange). Add slides 

to 0.25% Eosin-Y working solution for 20-30sec, and then wash with tap water until the water runs 

clear. Next, wash slides in a shortened ethanol series of 70%→90%→95%→95% washes for 

1min each, followed by 2, 2min xylene washed. Remove slides from xylene, tap off the excess 

then add Cytoseal-60 (Richard Allan Scientific – 8310-16) and coverslip. 

Bielschowsky Modified Silver Stain 

This silver stain is modified to highlight axons and axonal pathologies opposed to 

traditional silver stains (i.e. Golgi staining) which highlight some neuronal cell bodies, dendrites 

and axons. The solutions for the Bielschowsky stain were made the day of staining, and acid 

washed glassware was always used for any reagents or staining steps that involved silver 

solutions. Solutions: 10% silver nitrate (AgNO3) in distilled water, 10% ammonium AgNO3 (to 

stirring 10% silver solution, ammonium hydroxide (NH4OH) was added dropwise until the silver 

solution oxidized, then re-cleared), Developer Stock Solution (80ml distilled water+20ml 37.5% 

formaldehyde+0.5g citric acid+2 drops of 14N nitric acid with stirring), Working Developer Solution 

(to 100ml distilled water add 16 drops Developer Stock Solution and 16 drops ammonium 

hydroxide), 5% (w/v) sodium thiosulfate in distilled water, Ammonium water (for every 100ml 

distilled water add 16 drops ammonium hydroxide). Preheat the 10% AgNO3 and 10% ammonium 

AgNO3  in acid washed glassware at 40C. Thaw frozen slides in 1xPBS then wash in distilled water 

followed by ethanol series (as in LFB) to xylene washes, and then back down the ethanol series 

to distilled water in acid washed glassware. Place the slides in 10% AgNO3 for 15min at 40C. 

Wash the slides in distilled water for 5min, and while washing add ammonium hydroxide to the 

10% AgNO3 until the solution oxidizes and clears, place the slides back into the just made 10% 

ammonium-silver for 10min at 40C. Wash the slides in distilled water, and place in the original 10% 

ammonium-silver that was heating at 40C and stain slides for 10min. Remove the slides from heat 
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and place in the Working Developer Solution at room temperature and watch for differentiation. 

Fiber tracks will turn brown then black and once black fibers in gray matter are just visible 

(anywhere from 5-20min) wash the slides in ammonium water 3 times for 2min each wash. Next, 

wash in distilled water for 3 washes of 1min each, then wash in sodium thiosulfate for 5min to 

remove residual metal ions. Counterstain if desired for 5min with hematoxylin, then wash slides, 

go through the ethanol series to xylene and add Cytoseal-60 with a coverslip. 

Immunocytochemistry and Primary Antibodies 

For ICC procedures see Chapter 2. 

ICC Cell Counting and Analysis 

For Iba-1 and GFAP cell counts, cells with either GFAP+/DAPI+ or Iba-1+/DAPI+ cell 

bodies and nuclei were counted from across the entire corpus collosum (defined as the white 

matter region from cingulum to cingulum spanning the midline), the external capsule (white matter 

from the cingulum to the medial to the piriform cortex) and the internal capsule (from the ventral 

surface of the lateral ventricles through the mid-thalamus). GFAP+ astrocytes were either present 

or absent, no other phenotypic metric was used. Iba-1+ microglia were sub divided into inactive 

cells (thin cytoplasmic wrap of the nucleus, multiple long, branching processes) or active cell 

Table 4.1 – Primary Antibodies to Characterize the OBiden Mouse 
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(enlarge cytoplasm (3x inactive size), retraction and thickening of processes and/or bipolar or 

amoeboid morphology). Total white matter volume analyzed was calculated by outlining the white 

matter tracts to obtain an area and multiplying by tissue thickness, or cells were presented as a 

percentage of the total cell population. 

Results 

Histopathological Characteristics of MS Tissue 

The first step in the analysis of all the tissue was to develop and confirm that the histology 

stains such as LFB and the modified Bielshowsky stain worked on MS tissue and historical 

staining could be reproduced. In addition, this had the benefit of screening the tissue for lesions 

or pathology that may have been overlooked during the neuropathology report. This was 

especially important so that we could determine if the post-mortem tissue in our possession was 

indeed normal appearing tissue or if it had subtle underlying pathologies that would need to be 

taken into account. The first stain was LFB to test procedures, including staining times, 

temperatures and differentiation procedures, as well as evaluate the white matter integrity of the 

tissue. In Figure 4.1A, a low magnification image of healthy control human tissue shows that 

typical staining pattern for LFB stain with intact myelin stained a dark blue and indicated by the 

arrowhead, with gray matter showing a more dispersed staining pattern from radiating myelin 

fibers (Figure 4.1A,B). Also, the tissue has a pink background and upon higher magnification, 

purple nuclei can be discerned in the section. This is the result of counter staining with the 

common hematoxylin and eosin (H+E) counter stain to highlight the general tissue (pink) and 

dense nuclei acids (purple). The circular holes in the tissue are a result of the tissue punches 

obtained from the sections for later molecular analysis and are not the result of pathology or 

processing. 

Interestingly, in this patient-MS pair, LFB revealed the presence of two lesions in this small 

piece of normal appearing tissue. An active white matter lesion stripped of intact myelin and with  
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Figure 4.1 – LFB Staining of Control and MS Tissue 

 

Figure 4.1 – A) LFB staining (blue) and H+E counter stain (pink and purple) in the cortex 

of a healthy control patient post-mortem sample. B) Enlarged portion of the control tissue 

indicated by the white arrow in A showing staining in deep gray matter with radiating myelinated 

fibers. C) LFB staining of MS tissue again showing intact myelin but also the presence of two 

micro lesions, one in the gray matter (black arrow) and one in the white matter (black arrowhead). 

D) Enlarged portion of the cortex indicated by the arrow in C from the MS tissue. It shows an 

area of pink, eosin only staining deep in the cortex and surrounded by intact myelin. Scale bar = 

A+C = 200µm, B+D = 75µm. 



www.manaraa.com

 

 

93 

 

Figure 4.2 – Bielschowsky Silver Stain of MS Tissue 

 

Figure 4.2 – A) Silver staining of control patient tissue showing dark axonal silver stain 

in myelinated areas (white arrowhead) and radiating fibers in gray matter (white arrow) that is 

enlarged in D. B) MS patient silver staining showing much of the same pattern as A, with the 

addition of potential lesions in white matter (black arrowhead) and gray matter (black arrow). C) 

Section matching LFB stain from Figure 4.1 showing definite white (arrowhead) and gray (arrow) 

matter lesions matching the locations in Figure 4.1 with gray matter enlarged in E. 
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classical feature of MS lesions such as perivascular cuffing and apparent immune infiltrates. Also, 

a deep gray matter lesion that was subtler, but nevertheless evident from the lack of LFB staining 

on the border of the deep blue gray matter, and surrounded on all sides by dispersed myelinated 

fibers in the cortex (Figure 4.1C,D). Compared to the control deep gray matter (Figure 4.1A,B, 

white arrow), there is a noticeable difference in the MS tissue. The remaining MS patients 

analyzed did not show evidence of lesion activity in the tissue for this analysis. However, this does 

show that the LFB technique is robust and sensitive to white and gray matter lesions of myelin, 

and that there is pathology occurring throughout the CNS of patients that is continually going 

undetected, indicating the need for better diagnostic criteria and a better understand of the 

disease process. 

Next, the analysis was extended to include the modified-Bielschowsky silver stain for 

axons in the MS tissue. Unlike the original Golgi stain, the Bielschowsky modification is a shorter 

silver impregnation and fixing (7-14 days vs. 1 hour) and can be completed in one day with tissue 

mounted to slides rather than larger tissue blocks. Instead of filling certain neurons in the CNS, 

Bielschowsky silver appears to stain in a similar pattern to neurofilaments where cell bodies can 

be identified but the stain is more diffuse and can appear spindly, while axons appear as dense, 

dark brown or black structures. Slides adjacent to those used in Figure 4.1 were utilized for silver 

staining to test two points: first, do the lesions seen in Figure 4.1C and D all cause an alteration 

in silver staining and second, do the lesions change or disappear from adjacent slides as they 

should if the lesion is real and not an artifact of staining. In control tissue, there is consistent, dark 

silver staining throughout the white matter, similar to the dark LFB staining previously seen, 

indicating intact white matter (Figure 4.2A,D). There are also radiating fibers from the white matter 

into the deep gray matter that thin as they move into shallower cortical areas as predictive if the 

silver stain highlights axons where many of the largest will be located in the deep cortical regions 

(Figure 4.2A,D). 
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Figure 4.3 – End Stage LFB Histopathology in the OBiden Mouse 

 

Figure 4.3 – A) LFB staining of the left stria medullaris in control mice. White arrow 

indicates an area of intact myelin stain. B) LFB staining of the right stria medullaris in control 

mice. C) LFB staining in the left stria medullaris of end stage OBiden mouse. Two areas of 

subtle demyelination are indicated by black arrowheads. An area of apparent myelin loss is 

indicated by the black arrow. D) LFB staining in the right stria medullaris of OBiden shows 

intact, normal appearing myelin compared to the contralateral side in C. Scale bar = 200µm. 
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Staining in the MS tissue showed many of the same patterns seen in control tissue, intact 

dark white matter staining and radiating gray matter fibers (Figure 4.2B,C,E). The stain also 

highlighted the changing shape of the gray and white matter lesions. When a slide was chosen 

adjacent to the lesion identified in Figure 4.1, there was a dramatic decrease in the size of the 

unstained white matter lesion area (Figure 4.2B, black arrowhead). Also, the gray matter lesion 

appeared larger and more diffuse in an adjacent slide, but changed to the deep, focal lesion when 

tissue immediate succeed the LFB tissue was stained (Figure 4.2B,C,E). The white matter lesion 

also expanded and was clearly evident in the silver stain, showing the same ovoid shape as in 

LFB staining. This indicates that both histological stains are appropriate to use on intact, control 

tissue and show robust staining patterns. In disease states, the stains are very susceptible to 

tissue integrity and their binding will be effected even by small disturbances, such as the deep 

gray matter lesion seen in Figures 4.1 and 4.2. 

Histopathological Survey of OBiden Mice 

The histopathological analysis of tissue was tested and extended to the OBiden mice. 

Given the robust nature of histological techniques, additional testing and optimization were not 

required to obtained good staining results. First, LFB series were completed on 6 and 12 month 

OBiden tissue to identify any detectable pathology in the tissue and similarities or differences to 

the human tissue (Figure 4.3). One issue that was encountered was the fact that the white matter 

tracts, especially in the neocortical area, are much smaller in mice than in humans so many 

pathologies are smaller than more focal than in MS. An example of the pathologies identified was 

in the stria medullaris, a white matter tract connecting the habenula with forebrain structures. In 

the control, there was consistent LFB staining in this tract similar to that see in the control patients 

(Figure 4.3A,B). In the OBiden animal the presence of unilateral, focal lesions was detected only 

in the left stria medullaris (Figure 4.3C,D). The pathologies included the presence of two 

hypomyelinated areas, either as a result of active demyelination or partial remyelination and the 

dropout of stain in a fiber bundle just ventral to the stria medullaris (Figure 4.3C,D). The presence  
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Figure 4.4 – Astrocytes and Microglia in White Matter of the OBiden Mouse 

 

Figure 4.3 – A) Left and B) right control internal capsule. C) left and D) right OBiden 

internal capsule. E) Quantification of astrocyte cell density in white matter tracts; CC – corpus 

collosum, EC – external capsule, IC – internal capsule, showing no change in density. F) 

Percent total microglia with active morphology is increased in all white matter tracts in OBiden 

mice. Green = GFAP, Red = Iba-1, Scale bar = 25µm (n = 4 animals per group, 3 slides per 

animal). 
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Table 4.1 – White Matter Astrocyte and Microglia Statistics 
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of unilateral lesions is encouraging as MS is not a symmetrical disease and can disproportionately 

affect the CNS, in addition, both the lesions show no signs of peripheral infiltrates indicating that 

oligodendrocytes stress can cause MS lesion-like damage. 

As in the patient samples, OBiden tissue was run through silver staining and a number of 

pathologies were identified throughout the CNS (Supplemental Figure 4.1). In the brainstem pons 

nucleus there was a swollen neuron with evident buildup of silver staining at the axon hillock 

compared to control neurons in the area (Supp. Figure 4.1A,B). Moving to the cerebellum of one 

mouse, there was a cluster of axonal spheroids in the white matter of the flocculus (Supp. Figure 

4.1C,D). In the control white matter, dark axons can be seen traversing the picture and look even 

in texture and diameter. However, in the OBiden animals, numerous black spheroids can be seen 

with axons exiting from one point of the spheroid (Supp. Figure 4.1D). These are swellings along 

the axon and a hallmark of neurodegenerative diseases, including MS (Adams and Kubik, 1952; 

Kornek and Lassmann, 1999). Finally, evidence of mild axonal pathology or loss was found in the 

external capsule in the neocortex (Supp. Figure 4.1E,F). Both the left and right external capsule 

showed evidence of decreased silver stain in the OBiden mouse, but only the left external capsule 

is shown. The control mouse as strong dark brown or black staining throughout the white matter, 

but in the OBiden mouse, there is a noticeable lightening of the stain similar to the gray matter 

lesion in the MS patients. Overall, the OBiden CNS looks similar to control and many of the 

pathologies are detectable at microscopic levels (Supp. Figure 4.2). This shows that although we 

are generating pathology, it is not the wholesale change or degeneration seen in other mouse 

models of disease. 

Secondary Gliosis in the OBiden Mouse 

The next analysis of the OBiden mouse was to determine the cellular reaction to these 

apparent disturbances in white and gray matter identified through histopathology. Specifically, the 

reaction of two types of glial cells, astrocytes and microglia, to the primary metabolic stress and 

whether this reaction is similar to those described in MS. The particular phenotype of interest is 
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the change of microglia from an inactive to an activated state, which occurs when the cells 

encounter cellular debris or injury in their local environment and work to remove the debris. 

Astrocytes and microglia were stained for using antibodies against glial fibrillary acid protein 

(GFAP) and Iba-1 (Calcium channel) and total cells of each type were counted, as well as the 

percentage of microglia that displayed and active vs. Inactive phenotype. The differential 

phenotype was defined by a thin cytoplasm and long, branching processes for inactive cells, and 

3x enlarged cytoplasm, a bipolar or amoeboid shape and ramified processes for the active state. 

First, the density of GFAP+ astrocytes was determined across all white matter regions in 

the neo cortex at the level of the dorsal hippocampus. There was no difference in astrocyte density 

between control and OBiden mice at 12 months of age (Figure 4.4A,B,E). There was also no 

apparent overall increase in GFAP immunoreactivity away from cell bodies that would indicate 

areas of astrocyte differentiate, migration or phenotypic alterations (Figure 4.4A,B,C,D). This 

eliminated the more structurally and metabolically supportive astrocytes from gross disturbances 

in the white matter of OBiden mice. 

Second, the number of microglia was determined and what subset of the microglia 

displayed an activated instead of an inactive, resting morphology. There was a significant 

increase in the proportion of activated microglia in the OBiden mice in all white matter tracts 

(Figure 4.4A,B,C,D,F). As indicated by the arrowheads in Figure 4.4, the activated microglia 

appear more pronounced with Iba-1 staining because of the enlargement of their cytoplasm where 

the Iba-1 protein is located. The glial activation in the OBiden mouse is also more focal than in 

other degenerative diseases, with only a few cells activated in a patch rather than all cells 

throughout the white matter. This could be related to the lower level of stress that requires long 

term accumulation to manifest the more canonical signs of neurodegenerative disease. A 

secondary confirmation of the activation of the microglia was obtained by staining with the marker 

CD68, a lysosomal protein expressed in microglia and highly upregulated when  
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microglia are actively phagocytosing debris. Numerous examples of CD68+/Iba-1+ cells were 

found in the OBiden mice with high levels of CD68 staining throughout the cell (Supp. Figure 

4.3B,D,F). In the control, most Iba-1+ cells did not express CD68, and in the few instances they 

did it was low expression and confined to a small portion of one branching process (Supp. Figure 

4.3A,C,E). These changes indicate and increased prevalence of activated microglia in the OBiden 

CNS compared to controls. 

Additional Phenotypic Observations 

The gross pathological features of the OBiden mouse and their similarities to MS are an 

important connection to make. Further, there are subtler and microscopic pathologies that appear 

in the OBiden animals that are less frequent, yet still match disease phenotypes. One of these 

pathologies is axonal spheroids. They are enlargements and swellings along an axon that 

precede neuronal transection and can be transported along axons and cleared, but are prevalent 

in neurodegenerative diseases and one marker of neuronal stress. Because the diameter of 

axons is tightly regulated and is relatively invariable, compared to dendrites that can swell and 

contract depending on osmotic pressure, spheroids are a useful marker of neuronal injury. 

In the OBiden mice, two different antibodies were used to detect spheroids in 6 month old 

animals in a preliminary study. The first set of experiments was a co-stain with neurofilament light 

chain (NF-L) and synaptophysin (SYP). NF-L is a structural protein in axons and should be 

abundant especially in white matter regions where axons are densely packed. SYP is a synaptic 

transmembrane protein that is transported along axons as an mRNA for translation at the synapse 

or a protein that has been synthesized in the soma. In Figure 4.5, an example of a SYP+ spheroid 

in the external capsule of the OBiden mouse is shown. There is a clear buildup of SYP that 

colocalizes with NF-L in the axon extending from one side of the spheroid (Figure 4.5, arrow). In 

the surrounding axons there is little to no SYP staining as would be expected if neuronal function 

and transport were not impaired and the protein was being moved efficiently in the anterograde 

direction. 
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Figure 4.5 – Synaptophysin Spheroid in White Matter of the OBiden Mouse 

 

Figure 4.5 – Staining from 6 month old OBiden external capsule (white matter) showing 

the development of a synaptophysin (SYP)+ spheroid (green). The section was co-stained for 

NF-L to highlight the majority of axons. The spheroid has a clear buildup of SYP in the axon 

proximal to the spheroid (arrow) as well as the spheroid itself. An axon was only found on one 

side of the spheroid indicating a possible transection. 
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Figure 4.6 – Gray Matter Spheroid in the cortex of the OBiden Mouse 

 

Figure 4.6 – Staining of an example axon in the cortex of an OBiden mouse showing 

the development of multiple neurofilament medium/heavy (NF-green) spheroids (arrows). 

The green arrow indicates a spheroid occurring at an unmyelinated portion of the axon. The 

red arrow shows a spheroid occurring underneath a myelin internode. The white arrow is the 

normal axon entering the spheroids. 
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In addition to white matter spheroids, gray matter spheroids also develop in the OBiden 

model, as well as MS. Figure 4.6 shows an example of a cortical spheroid in the OBiden mice. In 

these animals, the myelin of oligodendrocytes expression mutant protein is labelled with eGFP 

(false colored to red in the figure) and the antibody SMI32 (neurofilament heavy and medium 

chain) is used to counter stain axons. The figure shows an intact axon that developed two 

spheroids in close succession, one in an unmyelinated region and one developing underneath a 

myelinated internode (Figure 4.6). The development of the spheroids in a different CNS region is 

an indicator of the extent of secondary pathology in the CNS. Also, a spheroid developing under 

an internode is important as it shows axonal pathology can develop while myelin is still present. 

It does not require demyelination to result in pathology, and shows the usefulness of a model with 

a well-defined primary etiology and the ability to study the secondary effects of that pathology. 

Discussion 

The characterization of the OBiden tissue to MS post-mortem samples allowed for a 

number of facets of the model to be evaluated. The extent, location, and distribution of pathology 

was investigated and compared to the changes seen in the CNS of patients. This showed that in 

MS NAGM and NAWM, as well as lesioned areas, the OBiden mice showed similar pathologies 

including decreased LFB staining and alterations to silver stained axons. Possibly of greater 

importance, thought, was that some of the pathologies were focal and even unilateral within the 

CNS. MS can be a heterogeneous disease with intra and inter patient variability of the location, 

extent and type of pathology. Although this does introduce a degree of difficult if the OBiden 

pathology mirrors the MS pathology in its variable generation, it will allow for the identification of 

consistently affected areas, as well as possibly leading insights into why there is such variability 

in the first place. 

Part of the variability may be due to secondary factors such as the local glial environment 

of astrocytes and microglia in the vicinity of effected oligodendrocytes. These cells will react to 
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changes in their local environment including retraction and alteration of processes and the 

upregulations of phagocytic markers in the case of microglia. These are well known phenotypes 

in MS patients, especially within and around white matter lesions. The OBiden mice also develop 

this phenotype and interestingly it is more pronounced than the lesions detected through 

histological techniques. This may lead to interesting future observations as it could mean that 

before there is overt demyelination, there are significant changes to oligodendrocyte structure or 

function that surrounding astrocytes and microglia react to. Although this is not a new concept, 

the OBiden model may be well suited to study the interactions between the cells given its relatively 

mild level of pathology compared to models with more overt demyelination. 

The interest in microglia and astrocytes lies in the possibility of modulating these cells and 

creating a neuro/oligo protective environment to delay or alter the courses of disease. Evidence 

exists that these cells are critically important in the normal functioning of the CNS and therefore 

changes to their state or functioning could be contributing to disease (Chen et al., 2010; Tang and 

Le, 2016; Trapp et al., 1999). Specifically, microglia are sensitive to changes within the CNS either 

through their surveillance of synapsis or clearing debris from stressed or dying cells. Loss of 

microglia causes dramatic phenotypic changes and alterations to behavior, highlighting their 

importance to the stability and functioning of the CNS (Chen et al., 2010). 

In addition to the above pathologies, it is important to document secondary neuronal 

pathologies in line with MS. One of the characteristics of MS, and many neurodegenerative 

diseases, is the development of axonal spheroids and swellings. The OBiden mouse indeed 

develops these pathologies, evident in both the white and gray matter of the mice. 

Although these features have been noted for years in diseases, the cause of spheroids 

and their effect on neuronal soma remains incompletely understood. There is evidence of synaptic, 

axonal and soma proteins within spheroids, indicating that retrograde and anterograde transport 

may be effected as well as remodeling of resident neuronal proteins. The OBiden model could 

offer interesting insights into the development of this pathology and its time course. Pathology 
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could be directly related to trophic support and release of metabolites or exosomes from 

oligodendrocytes to axons, or if it could be more related to structural support (Acharjee et al., 

2013; Oluich et al., 2012; Southwood et al., 2013). 
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CHAPTER 5 – SECONDARY NEURODEGENERATIVE CHANGES IN THE OBIDEN 
MOUSE AND SIMILARITIES TO MS TISSUE 

Introduction 

Many models of CNS diseases achieve changes through sudden, massive stresses, 

alterations to protein expression or massive protein overexpression to trigger degeneration 

(Brockschnieder et al., 2006; Hampton et al., 2013; Traka et al., 2016). There are advantages in 

these models including short time courses and rapid disease development. However, they are 

often limited by the intensity of the pathology hampering physical or behavioral testing of animals 

and the systemic, acute nature of the pathology only reproduces a subset of the pathologies seen 

in patients. This has opened to door for the development of more chronic, longitudinal models 

that may recapitulate more of the underlying degeneration of disease, like MS, that are most 

debilitating to patients and, so far, lack reliable efficacious treatments. 

The OBiden model is a disease model designed to use a known endogenous stressor to 

the CNS to initiate disease progression. These mice develop behavioral and cognitive deficits 

over time as a result of the chronic, primary metabolic stress that is present even at end stage 

ages in the mice. In addition they develop prototypic pathologies seen in neurodegenerative 

diseases, such as focal lesions, secondary gliosis and axonal spheroids that are all characteristic 

secondary reactions in many diseases including MS (Adams and Kubik, 1952; Staugaitis et al., 

2012). 

However, many of those pathologies are general, found throughout the tissue and 

especially it active, chronic or inactive lesion areas in MS. As the OBiden mouse appeared grossly 

normal, it became apparent that comparing it to MS tissue should involve an area of subtler 

pathology. This meant utilizing what is referred to as Normal Appearing Gray Matter (NAGM), 

areas that appear grossly normal upon neuropathological examination. Recent evidence has 

indicated that this is a simplistic view and the NAGM, and NAWM (white matter), can show signs 
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of degeneration at a molecular level, before it reaches the point of developing into macroscopic 

lesions (Kearney et al., 2015; Llufriu et al., 2014; Seewann et al., 2009). 

One aspect of lesion development is alterations to the neurofilament profile in neurons. 

Whether it is changing the phosphorylation state or the amount of neurofilaments detectable by 

western blotting, either light, medium or heavy chain neurofilaments, and these alterations are 

detectable before lesions develop (Hares et al., 2016; Huizinga et al., 2008). In MS in particular, 

lesions and neurodegeneration can result in the release of neurofilaments into interstitial fluid 

eventually leading to the detection of neurofilaments within the CSF (Bacioglu et al., 2016). 

Identifying and monitoring changes to neurofilament populations within the OBiden mouse would 

allow for correlations with MS tissue and confirming that the primary oligodendrocyte stress is 

capable of recreating similar neuronal dysfunction as seen in the human disease. 

Interestingly, the neurofilament genes are of variable importance for axon integrity and 

stability. Neurofilament heavy chain (NF-H), for example, is necessary for creating axons of large 

calibers, but is not necessary for expression or correct arrangement of neurofilament medium 

(NF-M) or light chain (NF-L) or microtubules (Elder et al., 1998b). However, NF-M is important not 

only for the expression of NF-L but also correct trafficking of the protein from the soma to the 

axonal compartment (Elder et al., 1998a; Jacomy et al., 1999). Although the exact nature of 

neurofilament interactions and how they affect each other and their importance to neuronal 

architecture are still debated, changes to neurofilament populations do affect neuronal function 

and are a potential indicator that more severe pathology may develop. 

Following the general neurofilament changes, more specific alterations to neuronal 

structure were investigated to identify novel pathologies in the OBiden mouse, their correlation to 

MS and to open areas of investigation into the function significance of those pathological changes. 

The more specific pathology identified in OBiden mice was found to relate to the axon initial 

segment (AIS). This is a substructure of the neuron in the proximal axon, but distal to the axon 

hillock, that contains high concentrations of sodium, potassium and calcium channels to initiate 
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individual or trains of action potentials (Kole and Stuart, 2012; Rasband, 2010). Additionally, 

recent evidence has implicated the AIS in the setup and maintenance of neuronal polarity, filtering 

of axonal cargo and a target of injury in neurodegenerative diseases (Kole and Stuart, 2012; 

Rasband, 2010; Schafer et al., 2009). These functions make the AIS a critically important 

component of the neuron and neuronal function and disruptions to its structure or function are 

likely to have significant downstream consequences. 

The AIS is a rigorously organized structure with a periodic arrangement of scaffolding 

proteins b4-spectrin and Ankyrin-G (AnkG) working to organize sodium channel variants such as 

Nav1.2 and 1.6 and potassium channels Kv4.1-4.4 and Kv7.1-7.3 (Inda et al., 2006; Kuba et al., 

2015; Trimmer, 2015). Through the distribution and organization of these channels, as well as 

their proximity or distance to the soma, the AIS is the location for control of the tone, threshold 

and hyperpolarization of the action potential. The influence on the AIS is not only driven by the 

proximal soma but also by extensive axo-axonic synaptic connections arising from interneurons 

and contralateral cortical connections (Fish et al., 2013; Wefelmeyer et al., 2015). Due partly to 

this complexity of channels, inputs and structure, the AIS is susceptible to changes of neuronal 

state, input signals and changes to downstream targets and the can alter its state and composition 

in turn (Kuba et al., 2014). 

Important to the OBiden project is the scaffolding protein AnkG and the potassium channel 

variant Kv7.2. AnkG is specifically located at the AIS, and Nodes of Ranvier, because it has an 

actin interacting domain, spectrin interacting domain as well as binding properties to ion channels 

(Ho et al., 2014; Susuki and Rasband, 2008). Also, AnkG is critical for the formation of the AIS 

and establishing neuronal polarity, although interestingly, it is not necessary once the AIS has 

been established in maintaining neuronal polarity and AIS function (Song et al., 2009). AnkG is 

then useful as a marker for the location, size and proximity to the soma of the AIS, and is currently 

the marker used to define its limits. 
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The main ion channel of interest is the potassium channel variant Kv7.2, a fast-activating, 

slow-inactivating voltage gated ion channel that is critical for setting the tone of the neuron by 

modulating the M-current (Hernandez et al., 2008; Ikeda and Kammermeier, 2002). The M-current 

is a prolonged current influx that maintains the AIS below threshold potential to prevent firing of 

additional action potentials. This allows for long term modulation of neuronal tone and prevents 

aberrant firing of action potentials or propagation of a spreading potential as is found in the 

epilepsy patients harboring Kv7.2 mutations (Delmas and Brown, 2005; Kuba et al., 2015). This 

makes the channel critical for correct neuronal function and alterations to its abundance, location 

or distribution could cause changes to neuronal function, animal behavior and even offer 

predictions as to the likely electrophysiological changes that would be observed. 

Materials and Methods 

Tissue Collection 

Mice were anesthetized with 375mg/kg of a 2.5X dose of 2-2-2 tribromoethanol (TBE) 

made in 2-methyl-2-butanol at 40X and diluted in 1X PBS with vortexing to the working 

concentration. The thoracic cavity was opened on the mice and a catheter was inserted into the 

left ventricle while a small cut was made in the right atrium. Next, 4% paraformaldehyde (PFA) 

dissolved in 0.1M Phosphate Buffer pH 7.2 was allowed to flow through the catheter by means of 

gravity for 15min until the mouse was ridged and fixed. Brains were dissected by removing the 

skull from the body, removing the lower mandible and making a vertical cut through the hard 

palate. Next, the ventral skull was broken away until the optic chiasm was revealed and the optic 

nerves were cut rostral to the optic chiasm followed by an incision along the midline of the skull 

moving rostral from the forman magnum to the olfactory bulbs. The skull was then removed, the 

brain extracted and tissue of interest placed in 12.5% sucrose in1X PBS for 6-8 hours followed 

by placing the tissue in 25% sucrose overnight. Finally, tissue was placed in tissue molds, covered 

with OCT embedding media and frozen by slowly submerging in dry-ice cooled 2-methyl butane. 
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Frozen tissue sections were cut between -18oC and -20oC and attached to Fisher 

Superfrost Slides and immediately stored in a slide box on dry ice. Slides were maintained at -

20oC until use, at which time they were thawed in three, 10min washes of 1x Phosphate Buffer 

Saline (PBS) pH 7.5. Following washes, one of four permeabolization/blocking steps were used 

to remove lipids and create holes in the tissue for a more thorough and consistent infiltration by 

primary antibodies. 

Staining Protocol 

Phosphate Buffer/Goat Serum/Triton X-100 – (Adpated from Ho, et al, 2014) Pap pen is 

applied around tissue that has been thawed in 1xPBS. The permeabolization and blocking steps 

are combined into one step by adding a solution of: 0.1M Phosphate Buffer, 0.3% Triton X-100, 

and 10% Goat Serum (PBTGS) for one hour while the slides are horizontal and not rocking. For 

the addition of primary antibodies, the old PBTGS is removed and antibodies are diluted in fresh 

PBTGS and added to sections. The sections must be maintained horizontal and cannot rock as 

rocking will cause the high Trinton X-100 content to dissolve the Pap pen and potentially allowing 

the solution to leak off the tissue sections. 

Primary Antibodies – Primary antibodies are diluted in either TBSGBA-2%Gts or PBTGS, 

depending on the blocking solution, and up to three antibodies are diluted in one solution. 100-

150µl of diluted antibodies is placed on each tissue section and for TBSGBA-2%Gts the sections 

are rocked overnight, but for PBTGS staining the slides are left in the damp chamber on the bench 

top overnight as rocking can cause the Triton to remove the pap pen and cause antibody run off 

from the sections. Sections from control and experimental animals were also taken for no primary 

controls to test the non-specific secondary staining, and in these cases the tissue received only 

blocking solution with no antibodies for overnight incubation. After staining, slides are washed 

three times for 5-10min in 1x PBS. 
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Secondary Antibodies – Isotype specific antibodies were used against primary antibodies, 

and all secondary antibodies are diluted at 1:1000 in TBSGBA-2%Gts. The most common 

fluorophores conjugated to secondary antibodies are Alexa488 (green), Alexa568 (red) and 

Alexa647 (infrared), as well as the addition of DAPI at 1:1000 to all secondary antibody mixes. 

Secondary antibodies were added to sections for 3 hours, with rocking, then washed in 1x PBS, 

3 times for 5-10mintes each. Following washes, the pap pen was removed with a Q-tip dipped in 

chloroform, and then a drop of Vectashield to prolong fluorescence was added to each slide 

before the addition of the coverslips. Coverslips were allowed to settle overnight on the slides 

while at 4C before excess Vectashield was vacuumed off and coverslips sealed to the slides with 

nail polish. Slides were stored at 4C to prolong fluorescence before image acquisition. 

 

AIS Analysis 

AIS Length Analysis – Confocal pictures were taken on a Leica microscope with Orca R2 

camera and Melles-Girot Spinning Disk laser. Picture stacks were taken of 10um thick cryostat 

sections at 0.3um step size with 25-30 pictures taken per stack. Stacks were flattened to produce 

a maximum intensity projection image, which was used for subsequent analysis. Each color 

channel (RGB) was imported into FIJI for ImageJ, automatically brightness/contrast adjusted and 

then color combine into an RGB image. The line tool was then selected and changed from a 

straight to freehand line to account for curves in the AIS. Next, the image was zoomed in 2x to 

make the AIS easier to identify, where the proximal end identified by the end of the ankyrin-G 

Table 5.1 – Axon Initial Segment Related Primary Antibodies 
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staining closest to the NeuN+ cell body. The ankyrin-G staining also had to form railroad track-

like pattern (e.g. ||) before it terminated to be used for analysis and the distal end was considered 

valid when it tapered to a point below the resolving power of the microscope and was not truncated 

where a square end could easily be identified. When the AIS met the above criteria, a line was 

drawn from the proximal to the distal end and the length measured, at least 5 AIS lengths were 

measured per picture at 40x magnification (213um x 163um picture dimensions). 6 images were 

analyzed per animal, 3 from matched left and right cortices, and the all AIS lengths for each animal 

were plotted as a cumulative frequency with bins of 2um, starting at length 0 and ending at 40um. 

This gave a roughly sigmoid curve for each animal, and the curves were averaged together within 

genotypes to get the average cumulative frequency, and then a Gaussian distribution was fit to 

the curves and the analyzed to determine if the shape, rise, or amplitude of the curves were 

different.  

Hippocampus AIS analysis – 40x pictures were taken of CA1 layer in dorsal (DHC) and 

ventral (VHC) hippocampus. The CA1 layer as defined as the cell dense layer either dorsal to the 

dentate gyrus and CA3 in DHC, or lateral to those structures in VHC and an area roughly halfway 

along the length of the CA1 layer was chosen as being representative and to avoid contamination 

from CA2. Image stacks were taken through ~8um of the 10um tissue slice, and combined into 

single images in Metamorph imaging software. The combined images were moved into FIJI where 

black and white images were color merged to obtain RGB images with DAPI=blue, Kv7.2=green 

and Ankyrin-G=red. For the analysis, a rectangle 50 pixels wide (~8um, or one cell body) and 700 

pixels long (~110um) and was centered over CA1 to account for AIS that exited from either 

direction of CA1, even though CA1 axons should exit the same direction. The analysis always 

began on the medial or dorsal part of CA1 and then moved laterally or ventrally, with the box 

placed, measured to stamp its location that the color profile obtained for each line of pixels along 

the length of the analysis box. This gave us RGB output graphs where intensity in each channel 

could be plotted for each portion of CA1. At least 10 analysis boxes were used per image and 3  
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Figure 5.1 – Gray Matter Neurofilament and Structural Western Blot 

 

Figure 5.1 – A) Representative bilateral western blots from a control and OBiden animal 

taken from the rostral entorhinal cortex. B) Quantification of normalized western blot signals 

showing an increase in nNF and NF-L without an increase in neuronal NeuN or synaptic APP. 

C) Representative bilateral western blots from dorsal hippocampus of control and OBiden mice. 

D) Quantification of normalized western blot signals showing a decrease in nNF in OBiden mice 

without changes to NF-L, NeuN or APP (n= 4 per group) 
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Table 5.2 – Gray Matter Neurofilament Related Western Blot Statistics 
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left and right images were analyzed per mouse. All left and right images were averaged separately 

to give a left and right average for each animal in case of side bias or slightly unmatched sections, 

as hippocampal structure can change quickly in the rostral-caudal direction we were cutting slides. 

When each average curve was obtained, they were integrated without smoothing to obtain a curve 

giving the change in intensity across CA1, where regions of higher intensity would give greater 

integral changes and a larger subsequent area under the curve (AUC). AUCs were calculated for 

each stain, in each animal, bilaterally and then averaged together to get composite AUCs for each 

genotype.  

Results 

Gray Matter Neurofilament Changes in OBiden and MS 

Aged OBiden mice at 12 months old were sacrificed and 1.5mm tissue punches were 

obtained and immediately frozen. Various gray matter regions were analyzed, through western 

blotting, to determine the overall integrity of the tissue and to identify any general changes to 

neurofilament proteins as a sign of degeneration. To control for the state of the tissue markers for 

neurons, NeuN, and synapses, amyloid precursor protein (APP), were utilized as well as loading 

control of a-Tubulin (Figure 5.1A,C). In two gray matter regions, the rostral entorhinal cortex 

(Rost-ENT) and dorsal hippocampus, there were no differences in NeuN or APP signal after 

accounting for loading and comparing control and OBiden mice (Figure 5.1 B,D)(Table 5.2-5.3). 

This shows that what appeared grossly normal under MR and visual evaluation at the time of 

dissection is molecular normal at least at the level of the abundance of neuronal and synaptic 

markers. However, when analyzing the neurofilament profile obtained from non-phosphorylated 

neurofilament (nNF) and neurofilament light chain (NF-L), there were differences between the 

control and OBiden groups. In the Rost-ENT cortex, there was a significant increase in the amount 

of nNF and NF-L in the OBiden cortex compared to controls (Figure 5.1A,B). In addition, there 

was an increase in the NF-L signal, indicating an area of potential neurofilament buildup. The 
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dorsal hippocampus showed a different, although still altered, signature with a decrease in the 

nNF signal, without changes to any other proteins including NeuN or APP (Figure 5.1C,D). The 

changes in the dorsal hippocampus could the result of the beginning of trimming neuronal 

processes, or neurons in the region have already undergone a buildup of neurofilament proteins 

and have since released some giving the decrease detected on western blots. Together, they 

show that the OBiden mice have alterations to their neurofilament profile, as detected across 

neurodegenerative disease. 

In order to confirm that the OBiden mice look like MS, samples of normal appearing gray 

matter (NAGM) without gross neuropathological lesions, were punched in gray and white matter 

and the gray matter punches were used for the same analysis as OBiden mice. As with the 

OBiden mice, there was no change to the overall level of NeuN or APP proteins, indicating that 

what appeared as NAGM physically, showed no difference between control and MS patients on 

a molecular level (Figure 5.2). Similar to the OBiden cortical tissue, the MS cortical punches 

showed a significant increase in the amount of nNF present in the cortex (Figure 5.2). This 

confirmed two ideas, first, the MS and OBiden cortical tissue share similar molecular changes 

and second, that so-called NAGM, is not always normal, and there are potential underlying 

pathologies that are currently undetected until autopsy. 

In addition to the entorhinal cortex and hippocampus, another cortical area called the 

piriform cortex was analyzed in OBiden mice for signs of changes. The piriform cortex receives 

much of its input from the olfactory tract and outputs to the entorhinal cortex and amygdala to 

control memory and response to odorant stimuli (Wang and Sun, 2012). Part of the piriform cortex 

was used to test antibodies, but the results showed similarities to the other cortical tissue tested 

from OBiden mice and MS patients. There was an increase in the mean nNF signal in the piriform 

cortex, however, because of increased variability in the tissue samples, this change was not 

statistically different (Supp. Figure 5.1). The change, though, was in the direction of other cortical  
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Figure 5.2 – MS Patient Cortical Neurofilament Western Blot 

 

Figure 5.2 – A) Representative blots from two control and two MS patients’ cortical gray 

matter blotted against neurofilament (nNF, NF-L) proteins and neuronal and synaptic parkers 

(NeuN and APP, respectively). B) Quantification of neurofilament western blots showed an 

increase in the nNF signal and no changes in any other protein analyzed including normal levels 

of NeuN and APP (n = 5 per goup) 
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Table 5.3 – MS Patient Western Blot Statistics 
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areas and could be a sign that the piriform cortex is at an earlier stage of degeneration and has 

not undergone sufficient pathological changes to be significantly different from controls.  

Axon Initial Segment in the OBiden Mice 

Neurofilament changes are an indication of pathological mechanisms at work in the 

OBiden and MS tissue, however, they are a more generalized pathology. To identify if the OBiden 

mice developed any novel pathologies, or specific secondary neuronal changes, a more in-depth 

analysis of neuronal structures was performed. For the beginning analysis, the concentration of 

NeuN+ neurons in comparable cortical areas showed no difference between control and OBiden 

mice (Figure 5.3A,B). This analysis was to determine if the overall number of NeuN+ neurons has 

changed between comparably regions of control and OBiden. A loss of neurons in OBiden mice 

would have been another confirmation of a secondary degenerative phenotype in response to 

primary oligodendrocytes stress, and could have implied the remaining neurons have substantial 

increases in intracellular neurofilament as detected from western blotting in Figure 5.1A. As an 

additional control, the percentage of NeuN+ cells with an intact, normal appearing DAPI+ nucleus 

was determined to confirm they were cells and none of the nuclei appeared to be blebbing, 

fractured, or exhibiting any signs of apoptosis (Figure 5.3C). 

After confirming the presence of intact neuronal cells, the focus was shifted to specific 

subdomains within the neurons. The analysis began by staining for the AIS of neurons in the 

cortex, specifically those in layer 5 and 6, the deep cortical output layers. These neurons should 

represent the final output from of processing through neocortical areas and therefore disruptions 

to signal processing or transmission should manifest in these cells (Glasser et al., 2016; Zingg et 

al., 2014). First, the number of NeuN+ cells with an AnkG+ segment was computed for the same 

cortical areas analyzed in Figure 5.3 (Figure 5.4A,B). This showed that a similar proportion of 

NeuN+ cells had easily identifiable AnkG+ segments associated with their cell body. Although 

most neuronal cell types have an AnkG+ AIS, those from interneurons can be more difficult to 

detect because they are shorter and smaller diameter. By showing that the cortical areas under  
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Figure 5.3 – General Characterization of the OBiden Mouse Cortex 

 

Figure 5.3 – A) Representative pictures from Control and OBiden cortex stained for the 

neuronal marker NeuN and nuclear chromatin with DAPI. NeuN+/DAPI+ cells are evident in 

both and spaced throughout the section (arrows) and there are NeuN-/DAPI+ non-neuronal 

cells that were no used for the analysis (arrowheads). B) There was no difference in the density 

of NeuN+ cells in the cortex between Control and OBiden. C) Virtually all NeuN+ cells had an 

identifiable DAPI nucleus, indicating no overall degeneration (n = 5 animals per group, 3 slides 

per animal). 
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Figure 5.4 – Axon Initial Segment Length in Rostral Entorhinal Cortex 

 

Figure 5.4 – A) Representative rostral entorhinal cortex layer 5 staining highlighting 

NeuN cell bodies (red) and AnkG+ AIS segments (green). Insets – Enlarged pictures of single 

AIS segments with arrowheads indicating the beginning and end of the AIS used for length 

measurements. Scale bar = 25 and 8.5µm. B) The proportion of AnkG+ neurons is unchanged 

between control and OBiden mice. C) Plot of the cumulative percent of AIS segments of 

various lengths. There is a significant left-shift in the curve as the AIS segments in the OBiden 

cortex are shorter than in the control cortex (n = 5 animals per group, 3 slides per animal, >30 

AIS segments per slide) 
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Table 5.4 – Axon Initial Segment Statistics in Rostral Entorhinal Cortex 
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analysis have equivalent numbers of AIS segments, it demonstrates a similar area for analysis. 

Next, the length of each AIS associated with an identified NeuN+ cell body was measured by 

hand. This was done with a line following the exact path of the AIS to account for curves and turns 

deflecting the AIS off a straight line. The lengths of the AIS segments were binned into 1µm bins 

and averaged across bilateral cortical areas to obtain a distribution for each of the mice analyze. 

When plotted as a cumulative distribution and averaged across mice, there was a significant left-

shift in the length curve for OBiden mice indicating a move towards shorter AIS segments (Figure 

5.4A,C). The AIS is known to be a plastic structure and ca vary its location from the soma and 

length as input and reciprocal feedback changes (Kuba et al., 2014; Kuba et al., 2015). This 

change, then, shows primary oligodendrocyte stress is affecting functional components of cortical 

neurons, which in turn could be leading to the behavioral changes observed in Chapter 2. 

The AnkG protein is a critical part of the AIS, but it is only one of a number of structural 

components and does not give information on the functional ion channels at the AIS. One of the 

other structural components is b4-spectrin (b4-spec) that associates with AnkG and the 

microtubule structure in the AIS. Then there are the functional ion channels represented by Nav1.2 

and Kv7.2 that contribute to the rising phase of the action potential and the after-hyperpolarization 

and tone of the neuron, respectively. Finally, as the analysis has focused on the neurons in deep 

cortical layers 5 and 6 the transcription factor Ctip2 (known as BCL11B (B-cell 

lymphoma/leukemia 11B)) was used to identify post-mitotic pyramidal neurons and determine if 

there was a change to that specific population of cells (Chen et al., 2008). To test for the presence 

and abundance of each of these proteins, tissue punches taken from gray matter regions were 

analyzed for their protein content. 

Western blots from the rostral entorhinal cortex and the more caudal, canonical, portion 

of the entorhinal cortex were analyzed for protein changes related to the AIS (Figure 5.5). 

Punches encompassing most of the cortex from layer 1 to layer 6 were homogenized and run to  
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Figure 5.5 – Entorhinal Cortex Axon Initial Segment Western Blot 

 

Figure 5.5 – A) Representative bilateral western blots from the rostral portion of the 

entorhinal cortex for major AIS related proteins. B) Quantification and normalization to control 

signals of the blots in A showing no significant changes. C) Representative bilateral western 

blots from the caudal portion of the entorhinal cortex. D) Quantification and normalization of 

the western blots from C, where there is a significant increase in Kv7.2 signal in OBiden mice. 

(n = 4 per group) 
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separate AIS proteins onto the same, or at most, 2 gels for consistency of analysis. Also, bilateral 

punches were run rather than pooling punches for a single animal. This was to determine if there 

was a left-right bias in the regions analyzed and increase our ability to detect unilateral lesions or 

pathology. In the rostral entorhinal cortex, there is some variability in proteins such as Kv7.2 

between mice, however the relative signal within bilateral punches of a single mouse is relatively 

consistent (Figure 5.5A). This could be due to variable experiences of the mice or developmental 

differences or possibly the result of significant pathology in one mouse. When the average signals 

across animals were compared though, there was no difference between control and OBiden 

mice in any of the analyzed proteins (Figure 5.5B). Interestingly, although there was a shortening 

of the AIS in layer 5 of the rostral entorhinal cortex, there was no change in AnkG levels measured 

by western blotting. A primary reason for this discrepancy could be that while ICC staining focused 

on a specific layer and region of cortex, the punches encompass a volume ~3000x larger than 

the volume used for staining analysis. This introduces more cells with possible AIS segments, 

and more AnkG protein, and the additional cells may have normal levels of AnkG, hence burying 

the signal from the shortened AIS in layer 5. 

Next, the analysis was continued into the caudal entorhinal cortex, and there a significant 

difference was detected via an increase in Kv7.2 protein in the OBiden mice (Figure 5.5C,D). This 

change occurred without increases to the sodium channels or the structural proteins AnkG and 

b4-spec. Together, these results could indicate an increased concentration of the Kv7.2 ion 

channel at the distal portion of the AIS, or a spreading of the Kv7.2 channel towards more soma 

proximal regions of the AIS. However, the Kv7.2 antibody did not work on many regions of the 

CNS for staining with ICC, as will be discussed later, and made confirmation of which pathology 

is causing the increased signal in the entorhinal cortex difficult to determine. As an additional 

check, though, the length of the AIS segments in layer 5 was analyzed the same way as those in 

the rostral entorhinal cortex in Figure 5.4C to determine if there were generalized changes to AIS 

length in the output pyramidal neurons (Supplemental Figure 5.2).  
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Next, the analysis of the AIS was extended to the hippocampus. Because of the behavioral 

deficits in memory identified in Chapter 2, and the intricate relationship between behavior and 

signaling between the entorhinal cortex and hippocampus, it was a logical area to analyze for 

deficits. As in the cortex, ICC staining was performed and in this region both AnkG and Kv7.2 will 

stain the AIS and as in the cortex the analysis was confined to the main cell output layer prior to 

the subiculum, namely the CA1 layer of the hippocampus (Witter, 2006). However, CA1 AIS 

segments are all oriented dorsal-ventrally and are relatively dense thereby creating a cellular layer 

with DAPI+ CA1 cell nuclei, then an AnkG/Kv7.2+ AIS layer with those two layers flanked by 

DAPI/AnkG/Kv7.2 negative regions. By drawing 10µm wide boxes across the CA1 region and 

analyzing the staining intensity, an estimate of the abundance of each stain can be obtained giving 

valuable information regarding the AIS integrity and composition (Figure 5.6A, yellow rectangles). 

Dorsal Hippocampus CA1 Axon Initial Segment Analysis 

The analysis began in the dorsal hippocampus (DHC) CA1 layer, where the left and right 

CA1 layers were analyzed across multiple mice to give intensity profiles of stains for AnkG, Kv7.2 

and DAPI (Figure 5.6A-C). In Figure 5.6A, a dotted yellow box represents the size of one of the 

measurements taken in the CA1 region and at least 10 measurements were obtained across a 

single CA1 area for each animal, bilaterally. These gave intensity profiles for the staining seen in 

Figure 5.6B and C, where the mean profile from the control and OBiden left and right CA1 areas 

is displayed. These traces show a characteristic peak in blue from the DAPI channel representing 

the dense CA1 nuclear layer. Also, they show an increase in AnkG intensity towards the strata 

oriens (S. oriens) side of CA1 where the AIS segments from the majority of the resident cells are 

projecting (Figure 5.6B,C, red traces). Finally, there are the green traces from the Kv7.2 signal 

that also are greatest on the S. oriens side of CA1 and for controls show a consistent pattern of 

reaching their highest expression level after AnkG peaks. However, in the OBiden mice, there is  
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Figure 5.6 – Dorsal Hippocampus CA1 Axon Initial Segment Staining 

 

Figure 5.6 – A) Representative staining images from the right CA1 layer of the DHC in 

control and OBiden mice with a single analysis box shown in dashed yellow. B) Left CA1 DHC 

plots of staining intensity, similar between genotypes. C) Right CA1 DHC plots of staining 

intensity with an apparent loss of intensity in Kv7.2 staining of OBiden mice. D) Normalized AUC 

graphs obtained from the integrals of the plots in B and C confirming the loss of Kv7.2 signal in 

the right CA1 of OBiden mice (n = 4 animals per group, 3-5 slides per animal). 
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Table 5.6 – Dorsal Hippocampus CA1 Area Under the Curve Statistics 
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a noticeable absence of Kv7.2 signal that is particularly noticeable on the right side where the 

Kv7.2 trace remains near zero across the entire region (Figure 5.6C, right graph). 

The next step was to confirm that the apparent loss of staining in the DHC CA1 layer of 

OBiden mice was indeed a significant loss of signal. Therefore, the intensity plots from Figure 

5.6B and C were integrated to give a continuously rising function, and then the area under the 

curve (AUC) was calculated for each animal bilaterally, then averaged together across genotypes. 

There was a significant reduction in the AUC for the right DHC CA1 in OBiden mice compared to 

controls, only for Kv7.2 staining, matching the visual results obtained from ICC (Figure 5.6D(i)). In 

addition, there was no change to either AnkG or DAPI staining, indicating that the loss of Kv7.2 is 

independent of AIS loss or cell loss in the CA1 (Figure 5.6D). The change to ion channels without 

loss of AIS structural proteins is not unusual as others have noted alterations to ion channel 

staining location or abundance as a result of neuronal stresses (Hamada and Kole, 2015; Kuba 

et al., 2015; Yamada and Kuba, 2016). This could be a likely explanation for the alteration to the 

Kv7.2 profile seen in the DHC, that the CA1 neurons have undergone a physical or electrical stress 

and to compensate, the potassium channel distribution along the AIS has been altered. 

A quantification was then made of AIS proteins from punches encompassing the dentate 

gyrus (DG), CA2 and CA3 layers and the molecular portions of the dorsal hippocampus. The 

westerns showed a significant decrease in AnkG signal from the entire hippocampus of the 

OBiden mice, when normalized to the NeuN signal (Supp. Figure 5.3). NeuN was used because 

the a-Tubulin blot was damaged and did not develop, however throughout the OBiden 

experiments the NeuN signals between control and OBiden animals were usually within 5% of 

each other. Therefore, normalizing to NeuN should give an accurate picture of the tissue and 

loading. In addition to significantly less AnkG, there was a decrease in the mean Kv7.2 signal that 

did not reach significance, however given the unilateral reduction in staining intensity seen in 

Figure 5.6 this could be reflected in the variability and lack of significance in the western blot as 

one side of the dorsal hippocampus is more strongly affected than the other. 
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Ventral Hippocampus AIS Analysis 

The AIS analysis in the hippocampus was extended to the ventral hippocampus CA1 layer 

to determine if there were similar changes to the staining profiles of the AIS from VHC. Similar to 

the DHC, regions of interest were drawn medial-laterally to encompass the CA1 layer and the 

surrounding molecular layers. The staining intensities were computer, plotted and averaged 

across both genotypes (Figure 5.7). In the VHC, the CA1 changes position so that the main cell 

layer is oriented dorsal-ventrally rather than medial laterally. Also, the cell layer is less condensed 

in the VHC, possibly reflecting the differential information processing that occurs in the VHC 

compared to the DHC. The intensity profiles from the VHC CA1 are more variable than those 

obtained from the DHC, again likely due to the de-condensation of the cell layer in the VHC. 

However, there appears to be no major loss of staining from DAPI, AnkG or Kv7.2 in the OBiden 

mouse on either left or right side, unlike the change seen in DHC (Figure 5.7B). When the intensity 

plots are quantified to obtain the AUC, no differences were detected between control and OBiden 

mice in the CA1 region of VHC. As with the DHC, punches were obtained from the VHC 

encompassing all layers of the hippocampus and analyzed by western blotting for major AIS 

related proteins (Supp. Figure 5.4). 

From the western blots of whole VHC, a significant decrease in Kv7.2 was detected in 

OBiden mice compared to controls (Supp. Figure 5.4B). This result differed from the intensity 

analysis as no loss of Kv7.2 was detected specifically in the CA1 layer. Therefore, it would seem 

there is a dropout of Kv7.2 in one of the other cellular areas of the VHC that accounts for the 

consistent drop in signal seen on western blots. The VHC is involved in much of the information 

processing relating to fear, anxiety and social memory in rodents, but as seen earlier there was 

no apparent deficit in fear conditioning in the OBiden mice at 12 months of age (Padilla-Coreano 

et al., 2016). Social and anxiety stressors were not tested at 12 months of age, but the change in 

Kv7.2 level in the VHC would imply one of those processing pathways may also be perturbed in 

the OBiden animals.  
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Figure 5.7 – Ventral Hippocampus CA1 Axon Initial Segment Staining Analysis 

 

Figure 5.7 – A) Representative staining images from left and right VHC CA1 layer of 

control and OBiden mice. B) Intensity profile plots obtained from VHC CA1 layer showing no 

apparent differences between genotypes. C) Area under the curve measurements for all 

stains, bilaterally, in the VHC show no differences between control and OBiden mice (n = 4 

animals per group, 3-5 slides per animal). 
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MS Cortex AIS Analysis 

As the OBiden model is meant to replicate the degenerative aspects of MS disease model, 

it was important to test MS and healthy cortical tissue to determine if AIS proteins could be 

detected after variable post-mortem intervals and if there were differences between groups. MS 

tissue was obtained from the Human Brain and Spinal Fluid Resource Center (HBSFRC) at UCLA 

from five MS patients and 5 patients whose cause of death was non-neurological. The tissue was 

taken from the frontal cortex, mainly from the inferior portion bordering the temporal lobe, however, 

the tissue was not from identical cortical areas. All MS tissue was confirmed to have 

neuropathological lesions as determined by a pathologist at UCLA, meaning that the tissue was 

considered NAGM for our analysis, similar to the state of OBiden cortical tissue that appears 

grossly normal.  

Tissue punches were obtained by gently thawing the tissue and taking punches from 

multiple white and gray matter areas from each patient. Given that human cortical tissue is much 

larger than mice, the gray matter punches encompassed multiple or single layers of cortical tissue 

with some crossing layers as they approached gyri or sulci in the brain. Therefore, the protein 

Ctip2 was also blotted for because it is expressed at higher levels in layers 5 and 6 than in any 

other layers of cortex as shown in mouse cortex (Supp. Figure 5.5). After blotting, the human 

cortical tissue showed no differences between healthy control patients and MS patients (Figure 

5.8A). Across the gray matter punches from the four patients analyzed, only AnkG and Ctip2 

showed even a possible change in expression levels, however neither protein was statistically 

significant so across these patients they did not change (Figure 5.8B). Because there was an 

increase in the mean of Ctip2 in MS patient samples compared to controls, this could indicate that 

the punches were taken from a slightly different cortical region than controls. To determine if 

compensating for Ctip2 would affect the results, the western blot signals were normalized to Ctip2 

for comparison (Figure 5.8C). Although there is an apparent drop in the mean for AIS proteins 

such as AnkG and Kv7.2, the values did not reach significance when run through a 2-way ANOVA  
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Figure 5.8 – Human Cortical Axon Initial Segment Western Blot 

 

Figure 5.8 – A) Western blots from four healthy control and MS patients for AIS and 

neuronal related proteins. B) Quantification of signals when normalized to a-Tubulin as a loading 

control showing no changes in expression level. C) Quantification of signals after double 

normalization to a-Tubulin, then to Ctip2 to account for layer 5/6 neurons. No differences were 

detected, likely due to the variability between patient samples. 
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Table 5.7 – Human Cortical Axon Initial Segment Statistics 
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analysis. This could be due in part to the low number of n, as many studies with human samples 

need n>7 to achieve sufficient power to detect changes, and the lack of difference is also due to 

the variability between samples. However, the decrease in the mean signal of AIS proteins when 

normalized to Ctip2 indicates that increasing the number of patient samples may reduce the 

variability and allow us to detect changes between groups.  

Discussion 

In previous chapters of this work, the focus has been on the primary pathological changes 

in OBiden mice and the development of secondary behavioral changes evident in the mice. 

However, even though myelin and oligodendrocytes are critical to CNS function, they do not work 

alone and as the OBiden model relies on a stress to myelin rather than the destruction of myelin, 

it is important to evaluate what are historically considered the important cells in the CNS, the 

neurons. The gray matter and neurons represent the major information processing centers of the 

CNS and do much to shape the behavior and physiology of the animals. Also, in MS the gray 

matter pathology has been overlooked for years even through in the progressive phases of the 

diseases it is likely the major contributor to dysfunction and cognitive issues in patients. Therefore, 

it was critical to understand the gray matter and neuronal pathology in the OBiden mice and its 

correlation to MS. 

The OBiden mice were evaluated for one of the pathologies identified in MS, as well as 

other neurological diseases affecting neurons, changes to the neurofilament profile in gray matter 

regions. There were significant changes to the neurofilament profile in multiple, cognitively related 

regions of gray matter including entorhinal cortex and dorsal hippocampus. Both areas are 

involved in the pathways responsible for an animal’s ability to correlate perform identification tasks 

such as T-Maze and Novel object, both of which the OBiden mice are deficient in. Critically, MS 

post-mortem tissue from normal appearing cortex shows the same neurofilament increase as the 

OBiden mouse cortex and initial indication that the primary metabolic stress in oligodendrocytes 



www.manaraa.com

 

 

137 

can lead to similar secondary gray matter pathology. This result begins to establish the molecular 

links between the OBiden model and MS, especially in the area of NAGM, which is often abnormal 

and understanding the early molecular changes in gray matter before overt lesions may help to 

establish new treatment paradigms for patients. 

Although the scope of this work did not encompass the exact changes to the neurofilament 

population, there is past evidence that the alteration to neurofilament pools affects neuronal 

structure and functions. Specifically, the diameter of axons can be altered as neurofilament heavy-

chain proteins change and for neurofilament light-chain alterations axonal transport and structure 

can be significantly altered (Elder et al., 1998a; Elder et al., 1998b; Jacomy et al., 1999; Lee et 

al., 1994; Liu et al., 2013). These effects could be evident if a technique such as electron 

microscopy to analyze exact axon diameters and subcellular structures. There could also be more 

gross effects that could be detected over larger areas of the cortex through the use of simpler 

staining or blotting techniques, which was the path pursued for the next stage of the OBiden 

project. 

The analysis then focused on the AIS as alterations to neuronal transport, diameter and 

functional connectivity could all manifest as disruptions to the action potential generating AIS. 

Because the AIS is regularly organized and relatively confined <50µm from the soma, alterations 

to the location or structure are readily detectable and can lead to valuable information regarding 

the state of the neuron. The investigation into the OBiden mice revealed two main changes, both 

related to the AIS. First, there was a shortening of cortical AIS segments in the entorhinal cortex 

as measure by AnkG. By altering the AIS length it changes the location of the ion channels relative 

to the soma, potentially altering two aspects of the action potential generation. One is that the 

voltage necessary at the soma decreases making action potentials easier to fire as the ion 

channels are located closer to the soma and the second is that back propagation of charge from 

the AIS to the soma. These changes could result in altered action potential timing, frequency and 
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bursting all of which could affect the downstream target of the neuron creating a cascading change 

within the CNS. 

Along with structural proteins like AnkG, select ion channels were analyzed in the OBiden 

mouse to determine if their abundance was altered due to ongoing pathology. Between the 

sodium and potassium channels we analyzed, which are the major ion channels responsible for 

shaping the action potential and affecting tone, all the differences we detected revolved around 

the Kv7.2 channel. Kv7.2 is a six-pass transmembrane protein that can form a heterotetramer with 

Kv7.3 as one of the main fast-activating and slow-inactivating channels at the AIS. Because of 

their slow inactivation, they are responsible for shaping part of the after-hyperpolarization of the 

action potential and setting the tone at which a neuron can fire. Alterations to the Kv7.2 channel 

can have two different effects; if the protein is upregulated it will decrease the tone of the neuron 

and if it is downregulated it should allow for an increased tone and burst firing (Battefeld et al., 

2014). To confirm the hypothesis would require patch clamping or brain slice electrophysiology, 

which could become part of future work on OBiden. 

Finally, human cortical tissue was analyzed for the presence of AIS proteins and their 

abundance. Although the proteins were detectable on western blots, there were no differences 

between healthy controls and MS patients when normalizing with tubulin or with tubulin and Ctip2. 

The second normalization was meant to account for the location of the punches, as some may 

have encompassed more superficial layers while others the deep layers, and Ctip2 is highly 

expressed in deep cortical layers 5 and 6 so it was one way to control for the location of punches. 

However, even controlling for Ctip2 there were no significant differences between control and MS 

patients, but there were promising changes in the mean in the direction we would predict from the 

OBiden model. Namely, there was a decrease in the mean signal in MS, especially for AnkG, and 

increasing the n to increase power may allow future experiments to confirm that there are AIS 

related differences in the cortex of MS patients. 
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One of the most interesting aspects of the OBiden model here is the number and 

distribution of secondary neuronal changes originating from the primary oligodendrocyte stress. 

Although there was a thought to look at the communication between oligodendrocytes and 

neurons in this project, because the communication between the two cell types is largely unknown, 

it was beyond the scope of this project. However, the model shows that even small perturbations 

to myelin can result in detectable, long lasting molecular and organismal effects and may provide 

an interesting aspect for further study in MS. 
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GENERAL DISCUSSION AND CONCLUSION 

General Characteristics of the OBiden Mouse 

In Chapter 1 of this work, the OBiden mouse was shown to develop metabolic stress in 

oligodendrocytes, even at 12 months of age. The stress was not present in every oligodendrocyte, 

however the goal of creating chronic stress in a subset of oligodendrocytes was achieved. 

Importantly, the OBiden mice retained normal molecular and functional characteristics in 

myelinated tracts. This included normal expression levels of major myelin proteins like MBP, PLP1 

and CNPase, and no temporal alterations when analyzed using auditory brainstem responses. 

This shows that the OBiden model, therefore, is well suited for chronic study, and any pathologies 

identified result from primary stress and demyelination of subsets of susceptible oligodendrocytes 

in the CNS. 

Also, the OBiden mouse showed that the UPR could be activated in mature, myelinated 

oligodendrocytes and it was not necessary to affect the cells only during development when they 

more metabolically active. This idea could be applied to MS as well, because pediatric-MS is more 

severe, quicker to progress and more difficult to treat than the more common adult MS (Chitnis et 

al., 2016). Meaning that if we were to activate the Plp1-i.msd transcript during development, we 

would see and accelerated rate of disease in the OBiden model. Potentially an interesting future 

investigation to define the temporal susceptibility of oligodendrocytes in vivo.  

One aspect of the current study is the low dose of Tamoxifen used to activate metabolic 

stress, and the resulting mild overt phenotypic changes. Overall, the OBiden mice do not manifest 

overt sensorimotor deficits compared to Controls. And even with an in vivo analysis of the CNS 

through non-invasive MR techniques, as seen in Chapter 3, there is no overt pathological change. 

In the future, this could be altered by increasing the dose of Tamoxifen from 175mg/kg to the 

maximum tolerable dose of 450mg/kg as a weekly oral gavage. In theory, this would increase the 

number of cells undergoing metabolic stress and increase the rate and extent of pathology 
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development. One of the goals of this updated experiment would be to detect lesions and changes 

through MR imaging to allow for tracking of pathology and targeted tissue extraction for analysis. 

Also, it would allow for treatment efficacy in the OBiden mouse to be tracked similar to the MR 

outcome measures used in clinical trials (Calabresi et al., 2014; Lublin et al., 2016). 

This work also utilized ex vivo histological techniques to compare the OBiden mouse to 

MS tissue. Here, there were distinct similarities between the OBiden mouse and MS pathology, 

most notably is the detection of focal demyelinating lesions in white matter tracts. Because this is 

one of the hallmark pathologies of MS it was excellent to see similar pathological features in the 

OBiden mouse. It showed that although MS is characterized as an autoimmune disease with 

peripheral cytotoxic cell infiltration necessary for lesions, similar demyelination can occur through 

chronic oligodendrocyte stress. This implies that if oligodendrocyte metabolic stress contributes 

to MS, the disease may be ongoing for years before reaching the clinical threshold. It could also 

explain the long-term failure of immune-modulatory therapy to prevent MS progression because 

it is targeting a symptom and not an underlying etiology of the disease (Feinstein et al., 2015; 

Lublin et al., 2016). However, the second point remains to be proven in relation to the OBiden 

mouse and early metabolic stress in MS patients. 

Secondary Behavioral Phenotypes 

The pathology and chronic metabolic stress in the OBiden mouse is interesting, but 

without a secondary manifestation affecting neuronal function and cognitive ability of the animals 

it would not truly resemble MS. In this work, it was established that the OBiden mice do 

development temporal and pathway specific cognitive changes as they age. 

The first change is a depression-like endophenotype beginning at 6 months of age and 

continuing through 12 months of age. This matches increased rates of depression in MS patients, 

independent of being diagnoses with a terminal disease (Haussleiter et al., 2009). The 

depression-like endophenotype was the first indication that chronic oligodendrocyte metabolic 
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stress could result in secondary dysfunctions identifiable in vivo. One benefit of the OBiden mouse 

developing this pathology is that the behavioral tests are comparatively simple to run over the 

long term. This means that neuroprotective or oligo-protective therapies could be tested in the 

OBiden mouse in high throughput to screen multiple candidate therapies. 

Temporally, following the depression-like endophenotype, the OBiden mouse develops a 

recognition memory deficit that is evident at 12 months of age. Changes to memory and cognition 

are especially detrimental in MS, and all neurodegenerative diseases, because of the toll they 

can take on patients and the limited treatments available to prolong function (Feinstein et al., 

2015). Therefore, the OBiden mouse displays another aspect of MS important to patients and 

another behavioral change for future use in treatment trials. The recognition memory change in 

the OBiden mouse was very specific, as it only occurred in tests where the mice had to identify 

novel objects and novel areas. Deficits did not occur in spatial navigation or the ability to solve 

the Barnes maze paradigm, nor did changes occur when the mice were place in a noxious test 

for cue- based fear conditioning. The specific changes indicated a well-defined pathway between 

entorhinal cortex and dorsal hippocampus was most likely disrupted. These CNS areas are highly 

involved in recognition memory compared to the other behaviors (Igarashi et al., 2014). Spatial 

memory and fear condition rely more, but not exclusively, on ventral hippocampus, amygdala and 

pre-frontal cortex which may degenerate given a longer timeline or increased metabolic stress. 

On spatial memory specifically, the historical paradigm indicated place cells within the 

hippocampus process a large degree of spatial information based on the firing and long term 

potentiation (O'Keefe, 1979). Although the OBiden mouse shows global and CA1 specific AIS 

changes, it wasn’t confirmed if place cell populations were altered or spared in our model. Also, 

memory processes are continually shown to be more complex and interconnected than previously 

understood (Aristovich et al., 2016; Eagle et al., 2015; Liska et al., 2015). This indicates that 

although the cortical-hippocampal connections are likely disrupted in the OBiden mouse, the 

connections carrying spatial information may be spared at this early disease point. More 
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investigation is needed to determine exactly what type of neurons are impacted at the current 

stage of the OBiden mouse model. 

Importantly, these behavioral changes were the first indication that stochastic metabolic 

stress in oligodendrocytes could secondarily alter organismal behavior. The behavioral tests run 

in this work are by no means exhaustive, though, and more tests could be utilized in the future to 

determine what other pathways may be effected in the OBiden mouse. 

General Secondary Neurodegenerative Changes 

The final stage of this work was to identify where and what neuronal phenotypes occurred 

in the OBiden mouse. Neurodegeneration in MS patients has only recently been reinvestigated in 

part because imaging techniques have reached the sophistication necessary to detect changes 

in vivo, and because neurodegeneration is unaffected by current treatments. 

In the OBiden mouse, a survey of various brain regions was conducted by using Western 

blotting to detect levels of the various neurofilament proteins in gray matter. Neurofilament 

proteins help to maintain axonal diameter and support the microtubule and actin cytoskeleton 

necessary for intracellular transport (Elder et al., 1998a; Elder et al., 1998b; Jacomy et al., 1999). 

Disruptions to neurofilament proteins have been noted in axonal pathologies such as spheroids 

and swellings, and within the soma of principal neurons. The OBiden mice showed a buildup of 

non-phosphorylated neurofilament heavy (nNF) and light chain (NF-L) in the rostral entorhinal 

and piriform cortices. Importantly, cortical punches from MS patient tissue obtained through the 

Human Brain and Spinal Fluid Resource Center (HBSFRC) also showed an increase in nNF. The 

changes in the OBiden mouse and MS patients were in normal appearing gray matter areas 

indicated by the normal levels of the neuronal marker, NeuN and synaptic marker synapsin-1. 

Whether this buildup was due to axonal or somatic accumulation of neurofilament proteins was 

not determined but could be analyzed in the future. 
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A final area that showed changes was the dorsal hippocampus. This area, along with the 

entorhinal cortex, are implicated in recognition memory so degenerative changes match the in 

vivo behavioral deficit. The dorsal hippocampus showed a decrease in nNF, rather than an 

increase, nevertheless, OBiden mice were different than Control animals in a behavioral relevant 

area. Although no hippocampal from MS patients was obtained for this study, previous work has 

shown that hippocampal degeneration occurs in MS patients, again showing similarities to the 

OBiden mouse (Pardini et al., 2014). 

Specific Secondary Axon Initial Segment Changes 

The neurofilament changes in the OBiden mouse are a good indication of pathology, but 

do not specifically show how secondary neuronal pathology could be manifesting as a behavioral 

deficit in vivo. Therefore, the final analysis was to determine what specific neuronal or axonal 

change was occurring in the OBiden mouse. Through a battery of immunocytochemical (ICC) 

stains looking at the axon, dendrites and synapses, the axon initial segment (AIS) was identified 

as a region that was altered in the OBiden mouse. Because the AIS integrates depolarization 

from the soma and axo-axonic inputs before it propagates and action potential, it is sensitive to 

upstream or downstream reciprocal feedback and can alter its length, proximity to the soma and 

ion channel composition accordingly (Kuba et al., 2014; Kuba et al., 2015). 

The AIS is typically defined through staining for the structural protein ankyrin-G (AnkG). 

AnkG is expressed during development, sets up neuronal polarity and allows for the clustering of 

ion channels that contain an ankyrin-interacting domain. In the OBiden mouse, there was a 

shortening of the AIS in the rostral entorhinal cortex. Interestingly, this shortening did not extend 

into the caudal-medial entorhinal cortex showing a very specific localization. However, upon 

Western blotting for AIS related proteins, the entorhinal cortex showed a significant increase in 

expression of potassium channel variant 7.2 (Kv7.2) that was not seen in the rostral entorhinal 

cortex. These two phenotypes in theory would act to cause different effects on action potentials 
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in their local area. The shortening of the AIS would likely bring ion channels closer to the soma 

and allow spreading depolarization to reach the AIS with less current thereby increasing action 

potential generation. Increasing Kv7.2 abundance without altering the AIS location should 

suppress action potential generation. Kv7.2 can form a tetrameric structure and this channel then 

controls the M-current at the AIS, causing a prolonged efflux of potassium, hyperpolarizing the 

cell and decreasing the frequency of action potentials. However, these are hypothesis based on 

the known function of the AIS and ion channels, and in vivo or in vitro electrophysiological 

experiments in the OBiden mouse would be necessary to confirm the hypothesis. 

The rostral and caudal portions of the entorhinal cortex have reciprocal connections with 

the dorsal hippocampus (Igarashi et al., 2014). The CA1 layer of the dorsal hippocampus was 

analyzed for AIS expression of AnkG and Kv7.2. The CA1 was used for the analysis because it is 

a downstream integration center receiving inputs form within the hippocampus as well as inputs 

form distributed cortical areas. If region upstream of the hippocampus was sufficiently effect, the 

CA1 should also show changes to the AIS if it has altered its firing properties. In fact, there was 

a decrease in the apparent immunoreactivity of the AnkG and Kv7.2 antibodies at the AIS of CA1 

principal cells. In this case there was a decrease in Kv7.2 expression, indicating a potential 

increase in action potential frequency. Because the tracts between entorhinal cortices and dorsal 

hippocampus are extensively myelinated and because of the specific behavioral deficit in 

recognition memory, it is not surprising to see changes to the action potential generating AIS. 

However, the order of change is not known and that temporal degeneration is an area of work for 

a future project. 

Finally, AIS proteins were analyzed in MS tissue. ICC staining of the AIS did not work 

under any conditions tested, however Western blotting from punches of cortex showed the 

potential for changes specifically to deep cortical neurons. Neurons in layer 5 and 6 express a 

negative regulator of transcription called Ctip2, and because of the specificity of that antibody for 

layers 5 and 6 it was used to normalize AIS protein signals from MS patients. Although no results 
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were significant due to variability between samples, there are indications that with increased 

number of samples a decrease in AIS proteins in MS cortex could be detected. This result would 

tie together with changes in the OBiden mouse AIS and give another point of correlation between 

the model and disease. In addition, showing changes to the AIS in MS cortex could tie in with 

ongoing electroencephalographic (EEG) studies in MS that could be replicated in the OBiden 

mouse and show that the molecular changes effect connectivity and alter behavior. 

Conclusion 

The OBiden mouse model is not the first model to show that activating the UPR in 

oligodendrocytes will cause metabolic stress, cell death and demyelination. However, it is unique 

in the method of causing stress by utilizing an endogenous oligodendrocyte protein. Also, the 

stochastic, episodic stress only effects subsets of cells rather than all oligodendrocytes allowing 

for the development of focal pathology. The focal pathology is similar to the seen in MS patients. 

In addition, behavioral and secondary neuronal changes in the OBiden mice show similarities to 

changes in MS patients and patient tissue. Taken together, the OBiden mouse model represents 

a novel look into the effect of oligodendrocytes on neuronal health and function and the cellular 

interactions within the CNS. 
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APPENDIX A – CHAPTER 2 SUPPLEMENT FIGURES AND TABLES 

 
  

Supplemental Figure 2.1 – Forced Swim Learned Helplessness Comparison 

 

Supplemental Figure 2.1 – Graph of the Forced Swim test quantified for each day of 

tests (1 vs. 2) in each genotype (Control – Ctl vs. OBiden – OBi) and at each age a cohort was 

tested ( 2 months – gray, 6 months – yellow, 12 months – red). All 2 month old mice are resilient 

to learned helplessness in the forced swim paradigm. At 6 months, the OBiden mice are 

susceptible to learned helplessness (indicated by the significant difference between the 1 and 

2 bars in the OBi at 6 months). This is also true at 12 months were the OBiden mice are still 

susceptible and increase their time immobile on Day 2. The Control mice show no susceptibility 

to learned helplessness at 6 or 12 months. 
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Supplemental Table 2.1 – Forced Swim Learned Helplessness Day 1 vs. 2  
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Supplemental Figure 2.2 – Novel Object Trace in the OBiden Mouse 

 

Supplemental Figure 2.2 – Tracing output from Ethovision of a control mouse at 2 

months of age prior to gavage (green line). The training trial with the same objects 

(arrowheads) and the probe day with the novel object (arrow) are shown. On the training 

day, the mouse stays near the edge of the box as expected and investigates both objects. 

On the probe day, there is a shift and more of the trace falls around the novel object 

compared to the familiar object, as expected with this test. 
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APPENDIX B – CHAPTER 4 SUPPLEMENTAL FIGURES AND TABLES 

 
  

Supplemental Figure 4.1 – Bielschowsky Silver Pathology in the OBiden Mouse 

 

Supplemental Figure 4.1 – A) Control pons showing neurons and fibers. B) OBiden 

pons showing a swollen and enlarged cell (black arrow) and normal neurons and fibers. C) 

Control flocculus with normal nuclei and axons (white arrow). D) OBiden flocculus with nuclei, 

normal fibers but a grouping of black, axonal spheroids (black arrows) in a focal area. E) Left 

external capsule of a control mouse showing deep silver staining. F) Left external capsule from 

an OBiden mouse with lighter, less intense silver staining indicating possible axonal loss or 
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Supplemental Figure 4.2 – Coronal Brain Silver Stain in the OBiden Mouse 

 

Supplemental Figure 4.2 – A) Coronal section through the neocortex of a control mouse 

at 12 month showing Bielschowsky silver stain roughly following the pattern of intact myelin 

tracts. B) Coronal section of OBiden mouse showing roughly similar staining pattern to that 

seen in control with possible subtle decreases in staining in the cortex and external capsule. 

Scale bar = 250µm. 
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Supplemental Figure 4.3 – CD68 Expression in Microglia of the OBiden Mouse 

 

Supplemental Figure 4.2 – ICC staining of the ventral brainstem pons white matter for 

microglia (red) and CD68 activation marker (green). A) Control Iba-1 staining. B) OBiden Iba-

1 staining. C) Control CD68 staining. D) OBiden CD68 staining. E) Control combine showing 

two cells (white arrows) in an inactive state given by no or low CD68 expression and thin Iba-

1 processes. F) OBiden combine image highlighting an active microglia expressing high levels 

of CD68 with ramified processes. Scale bar = 25µm, inset = 12.5µm. 
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APPENDIX C – CHAPTER 5 SUPPLEMENTAL FIGURES AND TABLES 

 
  

Supplemental Figure 5.1 – Piriform Cortex Neurofilament Western Blot 

 

Supplemental Figure 5.1 – A) Representative bilateral western blots from control and 

OBiden mouse rostral piriform cortex. B) Quantification of rostral piriform western blots 

showing no significant differences in amount of any protein between control and OBiden mice. 

C) 2-way ANOVA statistical table with no main effect differences between groups confirmed 

by no significant differences upon analysis with post-hoc t-tests. 
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Supplemental Figure 5.2 – Entorhinal Cortex Axon Initial Segment Lengths 

 

Supplemental Figure 5.2 – Cumulative AIS length plot showing no differences 

between control and OBiden curves for the caudal portion of the entorhinal cortex, indicating 

no shortening of the AIS when measured using AnkG. 
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Supplemental Figure 5.3 – Dorsal Hippocampus Axon Initial Segment Western 

 

Supplemental Figure 5.3 – A) Western blots of AIS proteins obtained from tissue 

punches encompassing the entire dorsal hippocampus. NeuN blots between control and 

OBiden mice were compared and no difference was found and all AIS proteins were 

normalized to NeuN signal. B) Quantification of NeuN normalized AIS western blots showing 

a significant decrease in AnkG signal as well as a decreased in the mean Kv7.2 signal. Due to 

variability between animals the Kv7.2 was not significantly altered (n = 4 per group) 
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Supplemental Figure 5.4 – Ventral Hippocampus Axon Initial Segment Western 

 

Supplemental Figure 5.4 – A) Representative bilateral western blots from the VHC of 

control and OBiden mice. B) Quantified, normalized signals show a significant decrease in 

the abundance of Kv7.2 in the OBiden mice compared to controls. Structural AIS proteins 

AnkG and b4-Spec were unaffected, as was neuronal marker NeuN (n= 4 per group). 
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Supplemental Table 5.1 – Dorsal and Ventral Hippocampus Axon Initial 

Segment Western Blot Statistics 
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Supplemental Figure 5.5 – Ctip2 Staining in the OBiden Mouse Cortex 

 

Supplemental Figure 5.5 – Staining from 12-month old control mouse in the rostral 

entorhinal cortex for Ctip2 (green) and DAPI (blue). The numbers and dashed lines indicate 

the layers of the cortex and Ctip2 staining predominates in layers 5 and 6. Scale bar = 100µm.  
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The work of this project was to develop, test and characterize a potential novel mouse 

model of the neurodegenerative disease Multiple Sclerosis (MS). Historically, MS has been 

identified as a primary autoimmune disease of the central nervous system (CNS). However, 

treatments based on this view have met with limited success, and in most cases, fail to prevent 

progression of MS from mild to moderate and severe forms. Original observations regarding 

axonal and neuronal pathology in the white and gray matter of the CNS were rediscovered in the 

1990s. These observations indicated that even in the absence of the immune system, 

degeneration can be widespread throughout the CNS. In addition, observations on the 

demyelinating leukodystrophy Pelizaeus-Merzbacher Disease (PMD), that could present with MS-

like symptoms led to a new hypothesis on the etiology of MS. 

This hypothesis was that primary metabolic stress in oligodendrocytes could be 

contributing to the etiology and pathology of MS. To test this, our lab developed the OBiden model, 

where we can induce metabolic stress in mature, myelinating oligodendrocytes. The method of 

metabolic stress induction is well characterized and therefore allows for the study of the 

secondary behavioral and neurodegenerative changes that occur in the OBiden mouse. 
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The OBiden mouse was found to develop a depression-like endophenotype at 6 months 

of age that persisted through until 12 months of age. Deficits in working and novel memory also 

developed at 12 months of age, and both behavioral changes are analogous to those noted in 

MS patients. Next, secondary lesions in white matter as well as extensive gliosis were identified 

in the OBiden animals, both of these results match closely with observations on MS tissue. Finally, 

secondary gray matter changes were noted throughout the CNS, specifically in cortical and 

hippocampal areas closely associated with the noted behavioral decline. These changes included 

structural neurofilament alterations and the novel identification of changes to the proximal axon 

called the axon initial segment (AIS). The AIS is intimately associated with action potential 

generation and changes to AIS structure or function are noted to coincide with neuronal firing 

changes. These neuronal changes are likely the cause of the behavioral deficits noted in the 

OBiden mice and develop solely as a secondary result to the primary oligodendrocyte stress. 

Together, these results indicate that the OBiden mouse shares a number of similarities to 

MS patients including cognitive behavioral changes and molecular degeneration phenotypes. 

These degenerative consequences occur without the invasion of the peripheral immune system 

and instead are a result of primary metabolic stress in oligodendrocytes. Therefore, the OBiden 

mouse may represent a novel insight into MS pathology and allow more general research into the 

communication and interaction between oligodendrocytes and neurons. 
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